经典电动力学

经典电动力学
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: , , , ,
2004-03
版次: 1
ISBN: 9787040144321
定价: 85.30
装帧: 平装
开本: 其他
纸张: 其他
页数: 808页
正文语种: 英语
原版书名: Classical Electrodynamics Third Edition
261人买过
  • 美国加州大学伯克利分校的J.D.Jackson编著的《经典电动力学》是一本有着很高知名度的电动力学教材,长期以来被世界上多所大学选用。本影印版是2001年出版的第3版。与前两版相比,第3版在保留基本经典电动力学内容的基础上,做了不少调整。例如,增加了一些关于数字计算方面的内容,以使读者对数字计算在电动力学中的应用有初步了解;删除了等离子体一章,将其部分内容在其它章节体现;增加了第2版出版以来的一些新的科技发展内容,例如光纤,半导体波导管,同步辐射等。    本书可作为物理类专业电动力学课程的教材,尤其适合开展双语教学的学校,对于有志出国深造的人员也是一本必不可少的参考书。 作者:(美国)杰克逊(John David Jackson) Introduction and Survey 1
    I.1 Maxwell Equations in Vacuum, Fields, and Sources 2
    I.2 Inverse Square Law, or the Mass of the Photon 5
    I.3 Linear Superposition 9
    I.4 Maxwell Equations in Macroscopic Media 13
    I.5 Boundary Conditions at Interfaces Between Different Media 16
    I.6 Some Remarks on Idealizations in Electromagnetism 19
    References and Suggested Reading 22
    Chapter 1 / Introduction to Electrostatics 24
    1.1 Coulomb's Law 24
    1.2 Electric Field 24
    1.3 Gauss's Law 27
    1.4 Differential Form of Gauss's Law 28
    1.5 Another Equation of Electrostatics and the Scalar Potential 29
    1.6 Surface Distributions of Charges and Dipoles and Discontinuities in the Electric Field and Potential 31
    1.7 Poisson and Laplace Equations 34
    1.8 Green's Theorem 35
    1.9 Uniqueness of the Solution with Dirichlet or Neumann Boundary Conditions 37
    1.10 Formal Solution of Electrostatic Boundary-Value Problem with Green Function 38
    1.11 Electrostatic Potential Energy and Energy Density; Capacitance 40
    .1.12 Variational Approach to the Solution of the Laplace and Poisson Equations 43
    1.13 Relaxation Method for Two-Dimensional Electrostatic Problems 47
    References and Suggested Reading 50
    Problems 50
    Chapter 2 / Boundary- Value Problems in Electrostatics: I 57
    2.1 Method of Images 57
    2.2 Point Charge in the Presence of a Grounded Conducting Sphere 58
    2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere 60
    2.4 Point Charge Near a Conducting Sphere at Fixed Potential 61
    2.5 Conducting Sphere in a Uniform Electric Field by Method of Images 62
    2.6 Green Function for the Sphere; General Solution for the Potential 64
    2.7 Conducting Sphere with Hemispheres at-Different Potentials 65
    2.8 Orthogonal Functions and Expansions 67
    2.9 Separation of Variables; Laplace Equation in Rectangular Coordinates 70
    2.10 A Two-Dimensional Potential Problem; Summation of Fourier Series 72
    2.11 Fields and Charge Densities in Two-Dimensional Corners and Along Edges 75
    2.12 Introduction to Finite Element Analysis for Electrostatics 79
    References and Suggested Reading 84
    Problems 85
    Chapter 3/Boundary- Value Problems in Electrostatics: H 95
    3.1 Laplace Equation in Spherical Coordinates 95
    3.2 Legendre Equation and Legendre Polynomials 96
    3.3 Boundary-Value Problems with Azimuthal Symmetry 101
    3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point 104
    3.5 Associated Legendre Functions and the Spherical Harmonics Ylm(θ,φ) 107
    3.6 Addition Theorem for Spherical Harmonics 110
    3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions 111
    3.8 Boundary-Value Problems in Cylindrical Coordinates 117
    3.9 Expansion of Green Functions in Spherical Coordinates 119
    3.10 Solution of Potential Problems with the Spherical Green Function Expansion 112
    3.11 Expansion of Green Functions in Cylindrical Coordinates 125
    3.12 Eigenfunction Expansions for Green Functions 127
    3.13 Mixed Boundary Conditions, Conducting Plane with a Circular Hole 129
    References and Suggested Reading 135
    Problems 135
    Chapter 4/ Multipoles, Electrostatics of Macroscopic Media,Dielectrics 145
    4.1 Multipole Expansion 145
    4.2 Multipole Expansion of the Energy of a Charge Distribution in an External Field 150
    4.3 Elementary Treatment of Electrostatics with Ponderable Media 151
    4.4 Boundary-Value Problems with Dielectrics 154
    4.5 Molecular Polarizability and Electric Susceptibility 159
    4.6 Models for Electric Polarizability 162
    4.7 Electrostatic Energy in Dielectric Media 165
    References and Suggested Reading 169
    Problems 169
    Chapter 5/Magnetostatics, Faraday's Law, Quasi-Static Fields 174
    5.1 Introduction and Definitions 174
    5.2 Blot and Savart Law 175
    5.3 Differential Equations of Magnetostatics and Ampere's Law 178
    5.4 Vector Potential 180
    5.5 Vector Potential and Magnetic Induction for a Circular Current Loop 181
    5.6 Magnetic Fields of a Localized Current Distribution, Magnetic Moment 184
    5.7 Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction 188
    5.8 Macroscopic Equations, Boundary Conditions on B and H 191
    5.9 Methods of Solving Boundary-Value Problems in Magnetostatics 194
    5.10 Uniformly Magnetized Sphere 198
    5.11 Magnetized Sphere in an External Field; Permanent Magnets 199
    5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field 201
    5.13 Effect of a Circular Hole in a Perfectly Conducting Plane with an Asymptotically Uniform Tangential Magnetic Field on One Side 203
    5.14 Numerical Methods for Two-Dimensional Magnetic Fields 206
    5.15 Faraday's Law of Induction 208
    5.16 Energy in the Magnetic Field 212
    5.17 Energy and Self-and Mutual Inductances 215
    5.18 Quasi-Static Magnetic Fields in Conductors; Eddy Currents; Magnetic Diffusion 218
    References and Suggested Reading 223
    Problems 225
    Chapter 6 / Maxwell Equations, Macroscopic Electromagnetism,Conservation Laws 237
    6.1 Maxwell's Displacement Current; Maxwell Equations 237
    6.2 Vector and Scalar Potentials 239
    6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge 240
    6.4 Green Functions for the Wave Equation 243
    6.5 Retarded Solutions for the Fields: Jefimenko's Generalizations of the Coulomb and Biot-Savart Laws; Heaviside-Feynman Expressions for Fields of Point Charge 246
    6.6 Derivation of the Equations of Macroscopic Electromagnetism 248
    6.7 Poynting's Theorem and Conservation of Energy and Momentum for a System of Charged Particles and Electromagnetic Fields 258
    6.8 Poynting's Theorem in Linear Dissipative Media with Losses 262
    6.9 Poynting's Theorem for Harmonic Fields; Field Definitions of Impedance and Admittance 264
    6.10 Transformation Properties of Electromagnetic Fields and Sources Under Rotations, Spatial Reflections, and Time Reversal 267
    6.11 On the Question of Magnetic Monopoles 273
    6.12 Discussion of the Dirac Quantization Condition 275
    6.13 Polarization Potentials (Hertz Vectors) 280
    References and Suggested Reading 282
    Problems 283
    Chapter 7 / Plane Electromagnetic Waves and Wave Propagation 295
    7.1 Plane Waves in a Nonconducting Medium 295
    7.2 Linear and Circular Polarization; Stokes Parameters 299
    7.3 Reflection and Refraction of Electromagnetic Waves at a Plane Interface Between Two Dielectrics 302
    7.4 Polarization by Reflection, Total Internal Reflection; Goos-Hanchen Effect 306
    7.5 Frequency Dispersion Characteristics of Dielectrics, Conductors, and Plasmas 309
    7.6 Simplified Model of Propagation in the Ionosphere and Magnetosphere 316
    7.7 Magnetohydrodynamic Waves 319
    7.8 Superposition of ,Waves in One Dimension; Group Velocity 322
    7.9 Illustration of the Spreading of a Pulse As It Propagates in a Dispersive Medium 326
    7.10 Causality in the Connection Between D and E; Kramers-Kronig Relations 330
    7.11 Arrival of a Signal After Propagation Through a Dispersive Medium 335
    References and Suggested Reading 339
    Problems 340
    Chapter 8 / Waveguides, Resonant Cavities, and Optical Fibers 352
    8.1 Fields at the Surface of and Within a Conductor 352
    8.2 Cylindrical Cavities and Waveguides 356
    8.3 Waveguides 359
    8.4 Modes in a Rectangular Waveguide 361
    8.5 Energy Flow and Attenuation in Waveguides 363
    8.6 Perturbation of Boundary Conditions 366
    8.7 Resonant Cavities 368
    8.8 Power Losses in a Cavity; Q of a Cavity 371
    8.9 Earth and Ionosphere as a Resonant Cavity: Schumann Resonances 374
    8.10 Multimode Propagation in Optical Fibers 378
    8.11 Modes in Dielectric Waveguides 385
    8.12 Expansion in Normal Modes; Fields Generated by a Localized Source in a Hollow Metallic Guide 389
    References and Suggested Reading 395
    Problems 396
    Chapter 9/Radiating Systems, Multipole Fields and Radiation 407
    9.1 Fields and Radiation of a Localized Oscillating Source 407
    9.2 Electric Dipole Fields and Radiation 410
    9.3 Magnetic Dipole and Electric Quadrupole Fields 413
    9.4 Center-Fed Linear Antenna 416
    9.5 Multipole Expansion for Localized Source or Aperture in Waveguide 419
    9.6 Spherical Wave Solutions of the Scalar Wave Equation 425
    9.7 Multipole Expansion of the Electromagnetic Fields 429
    9.8 Properties of Multipole Fields, Energy and Angular Momentum of Multipole Radiation 432
    9.9 Angular Distribution of Multipole Radiation 437
    9.10 Sources of Multipole Radiation; Multipole Moments 439
    9.11 Multipole Radiation in Atoms and Nuclei 442
    9.12 Multipole Radiation from a Linear, Center-Fed Antenna 444
    References and Suggested Reading 448
    Problems 449
    Chapter 10 / Scattering and Diffraction 456
    10.1 Scattering at Long Wavelengths 456
    10.2 Perturbation Theory of Scattering, Rayleigh's Explanation of the Blue Sky, Scattering by Gases and Liquids, Attenuation in Optical Fibers 462
    10.3 Spherical Wave Expansion of a Vector Plane Wave 471
    10.4 Scattering of Electromagnetic Waves by a Sphere 473
    10.5 Scalar Diffraction Theory 478
    10.6 Vector Equivalents of the Kirchhoff Integral 482
    10.7 Vectorial Diffraction Theory 485
    10.8 Babinet's Principle of Complementary Screens 488
    10.9 Diffraction by a Circular Aperture; Remarks on Small Apertures 490
    10.10 Scattering in the Short-Wavelength Limit 495
    10.11 Optical Theorem and Related Matters 500
    References and Suggested Reading 506
    Problems 507
    Chapter 11/Special Theory of Relativity 514
    11.1 The Situation Before 1900, Einstein's Two Postulates 515
    11.2 Some Recent Experiments 518
    11.3 Lorentz Transformations and Basic Kinematic Results of Special Relativity 524
    11.4 Addition of Velocities; 4-Velocity 530
    11.5 Relativistic Momentum and Energy of a Particle 533
    11.6 Mathematical Properties of the Space-Time of Special Relativity 539
    11.7 Matrix Representation of Lorentz Transformations, Infinitesimal Generators 543
    11.8 Thomas Precession 548
    11.9 Invariance of Electric Charge; Covariance of Electrodynamics 553
    11.10 Transformation of Electromagnetic Fields 558
    11.11 Relativistic Equation of Motion for Spin in Uniform or Slowly Varying External Fields 561
    11.12 Note on Notation and Units in Relativistic Kinematics 565
    References and Suggested Reading 566
    Problems 568
    Chapter 12/Dynamics of Relativistic Particles and Electromagnetic Fields 579
    12.1 Lagrangian and Hamiltonian for a Relativistic Charged Particle in External Electromagnetic Fields 579
    12.2 Motion in a Uniform, Static Magnetic Field 585
    12.3 Motion in Combined, Uniform, Static Electric and Magnetic Fields 586
    12.4 Particle Drifts in Nonuniform, Static Magnetic Fields 588
    12.5 Adiabatic Invariance of Flux Through Orbit of Particle 592
    12.6 Lowest Order Relativistic Corrections to the Lagrangian for Interacting Charged Particles: The Darwin Lagrangian 596
    12.7 Lagrangian for the Electromagnetic Field 598
    12.8 Proca Lagrangian; Photon Mass Effects 600
    12.9 Effective "Photon" Mass in Superconductivity; London Penetration Depth 603
    12.10 Canonical and Symmetric Stress Tensors; Conservation Laws 605
    12.11 Solution of the Wave Equation in Covariant Form; Invariant Green Functions 612
    References and Suggested Reading 615
    Problems 617
    Chapter 13/Collisions, Energy Loss, and Scattering of Charged Particles,Cherenkov and Transition Radiation 624
    13.1 Energy Transfer in Coulomb Collision Between Heavy Incident Particle and Free Electron; Energy Loss in Hard Collisions 625
    13.2 Energy Loss from Soft Collisions; Total Energy Loss 627
    13.3 Density Effect in Collisional Energy Loss 631
    13.4 Cherenkov Radiation 637
    13.5 Elastic Scattering of Fast Charged Particles by Atoms 640
    13.6 Mean Square Angle of Scattering; Angular Distribution of Multiple Scattering 643
    13.7 Transition Radiation 646
    References and Suggested Reading 654
    Problems 655
    Chapter 14/Radiation by Moving Charges 661
    14.1 Lienard-Wiechert Potentials and Fields for a Point Charge 661
    14.2 Total Power Radiated by an Accelerated Charge: Larmor's Formula and Its Relativistic Generalization 665
    14.3 Angular Distribution of Radiation Emitted by an Accelerated Charge 668
    14.4 Radiation Emitted by a Charge in Arbitrary, Extremely Relativistic Motion 671
    14.5 Distribution in Frequency and Angle of Energy Radiated by Accelerated Charges: Basic Results 673
    14.6 Frequency Spectrum of Radiation Emitted by a Relativistic Charged Particle in Instantaneously Circular Motion 676
    14.7 Undulators and Wigglers for Synchrotron Light Sources 683
    14.8 Thomson Scattering of Radiation 694
    References and Suggested Reading 697
    Problems 698
    Chapter 15 / Bremsstrahlung, Method of Virtual Quanta,Radiative Beta Processes 708
    15.1 Radiation Emitted During Collisions 709
    15.2 Bremsstrahlungin Coulomb Collisions 714
    15.3 Screening Effects; Relativistic Radiative Energy Loss 721
    15.4 Weizsficker-Williams Method of Virtual Quanta 724
    15.5 Bremsstrahlung as the Scattering of Virtual Quanta 729
    15.6 Radiation Emitted During Beta Decay 730
    15.7 Radiation Emitted During Orbital Electron Capture: Disappearance of Charge and Magnetic Moment 732
    References and Suggested Reading 737
    Problems 737
    Chapter 16 / Radiation Damping, Classical Models of Charged Particles 745
    16.1 Introductory Considerations 745
    16.2 Radiative Reaction Force from Conservation of Energy 747
    16.3 Abraham-Lorentz Evaluation of the Self-Force 750
    16.4 Relativistic Covariance; Stability and Poincar6 Stresses 755
    16.5 Covariant Definitions of Electromagnetic Energy and Momentum 757
    16.6 Covariant Stable Charged Particle 759
    16.7 Level Breadth and Level Shift of a Radiating Oscillator 763
    16.8 Scattering and Absorption of Radiation by an Oscillator 766
    References and Suggested Reading 768
    Problems 769
    Appendix on Units and Dimensions 775
    1 Units and Dimensions, Basic Units and Derived Units 775
    2 Electromagnetic Units and Equations 777
    3 Various Systems of Electromagnetic Units 779
    4 Conversion of Equations and Amounts Between SI Units
    and Gaussian Units 782
    Bibliography 785
    Index 791
  • 内容简介:
    美国加州大学伯克利分校的J.D.Jackson编著的《经典电动力学》是一本有着很高知名度的电动力学教材,长期以来被世界上多所大学选用。本影印版是2001年出版的第3版。与前两版相比,第3版在保留基本经典电动力学内容的基础上,做了不少调整。例如,增加了一些关于数字计算方面的内容,以使读者对数字计算在电动力学中的应用有初步了解;删除了等离子体一章,将其部分内容在其它章节体现;增加了第2版出版以来的一些新的科技发展内容,例如光纤,半导体波导管,同步辐射等。    本书可作为物理类专业电动力学课程的教材,尤其适合开展双语教学的学校,对于有志出国深造的人员也是一本必不可少的参考书。
  • 作者简介:
    作者:(美国)杰克逊(John David Jackson)
  • 目录:
    Introduction and Survey 1
    I.1 Maxwell Equations in Vacuum, Fields, and Sources 2
    I.2 Inverse Square Law, or the Mass of the Photon 5
    I.3 Linear Superposition 9
    I.4 Maxwell Equations in Macroscopic Media 13
    I.5 Boundary Conditions at Interfaces Between Different Media 16
    I.6 Some Remarks on Idealizations in Electromagnetism 19
    References and Suggested Reading 22
    Chapter 1 / Introduction to Electrostatics 24
    1.1 Coulomb's Law 24
    1.2 Electric Field 24
    1.3 Gauss's Law 27
    1.4 Differential Form of Gauss's Law 28
    1.5 Another Equation of Electrostatics and the Scalar Potential 29
    1.6 Surface Distributions of Charges and Dipoles and Discontinuities in the Electric Field and Potential 31
    1.7 Poisson and Laplace Equations 34
    1.8 Green's Theorem 35
    1.9 Uniqueness of the Solution with Dirichlet or Neumann Boundary Conditions 37
    1.10 Formal Solution of Electrostatic Boundary-Value Problem with Green Function 38
    1.11 Electrostatic Potential Energy and Energy Density; Capacitance 40
    .1.12 Variational Approach to the Solution of the Laplace and Poisson Equations 43
    1.13 Relaxation Method for Two-Dimensional Electrostatic Problems 47
    References and Suggested Reading 50
    Problems 50
    Chapter 2 / Boundary- Value Problems in Electrostatics: I 57
    2.1 Method of Images 57
    2.2 Point Charge in the Presence of a Grounded Conducting Sphere 58
    2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere 60
    2.4 Point Charge Near a Conducting Sphere at Fixed Potential 61
    2.5 Conducting Sphere in a Uniform Electric Field by Method of Images 62
    2.6 Green Function for the Sphere; General Solution for the Potential 64
    2.7 Conducting Sphere with Hemispheres at-Different Potentials 65
    2.8 Orthogonal Functions and Expansions 67
    2.9 Separation of Variables; Laplace Equation in Rectangular Coordinates 70
    2.10 A Two-Dimensional Potential Problem; Summation of Fourier Series 72
    2.11 Fields and Charge Densities in Two-Dimensional Corners and Along Edges 75
    2.12 Introduction to Finite Element Analysis for Electrostatics 79
    References and Suggested Reading 84
    Problems 85
    Chapter 3/Boundary- Value Problems in Electrostatics: H 95
    3.1 Laplace Equation in Spherical Coordinates 95
    3.2 Legendre Equation and Legendre Polynomials 96
    3.3 Boundary-Value Problems with Azimuthal Symmetry 101
    3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point 104
    3.5 Associated Legendre Functions and the Spherical Harmonics Ylm(θ,φ) 107
    3.6 Addition Theorem for Spherical Harmonics 110
    3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions 111
    3.8 Boundary-Value Problems in Cylindrical Coordinates 117
    3.9 Expansion of Green Functions in Spherical Coordinates 119
    3.10 Solution of Potential Problems with the Spherical Green Function Expansion 112
    3.11 Expansion of Green Functions in Cylindrical Coordinates 125
    3.12 Eigenfunction Expansions for Green Functions 127
    3.13 Mixed Boundary Conditions, Conducting Plane with a Circular Hole 129
    References and Suggested Reading 135
    Problems 135
    Chapter 4/ Multipoles, Electrostatics of Macroscopic Media,Dielectrics 145
    4.1 Multipole Expansion 145
    4.2 Multipole Expansion of the Energy of a Charge Distribution in an External Field 150
    4.3 Elementary Treatment of Electrostatics with Ponderable Media 151
    4.4 Boundary-Value Problems with Dielectrics 154
    4.5 Molecular Polarizability and Electric Susceptibility 159
    4.6 Models for Electric Polarizability 162
    4.7 Electrostatic Energy in Dielectric Media 165
    References and Suggested Reading 169
    Problems 169
    Chapter 5/Magnetostatics, Faraday's Law, Quasi-Static Fields 174
    5.1 Introduction and Definitions 174
    5.2 Blot and Savart Law 175
    5.3 Differential Equations of Magnetostatics and Ampere's Law 178
    5.4 Vector Potential 180
    5.5 Vector Potential and Magnetic Induction for a Circular Current Loop 181
    5.6 Magnetic Fields of a Localized Current Distribution, Magnetic Moment 184
    5.7 Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction 188
    5.8 Macroscopic Equations, Boundary Conditions on B and H 191
    5.9 Methods of Solving Boundary-Value Problems in Magnetostatics 194
    5.10 Uniformly Magnetized Sphere 198
    5.11 Magnetized Sphere in an External Field; Permanent Magnets 199
    5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field 201
    5.13 Effect of a Circular Hole in a Perfectly Conducting Plane with an Asymptotically Uniform Tangential Magnetic Field on One Side 203
    5.14 Numerical Methods for Two-Dimensional Magnetic Fields 206
    5.15 Faraday's Law of Induction 208
    5.16 Energy in the Magnetic Field 212
    5.17 Energy and Self-and Mutual Inductances 215
    5.18 Quasi-Static Magnetic Fields in Conductors; Eddy Currents; Magnetic Diffusion 218
    References and Suggested Reading 223
    Problems 225
    Chapter 6 / Maxwell Equations, Macroscopic Electromagnetism,Conservation Laws 237
    6.1 Maxwell's Displacement Current; Maxwell Equations 237
    6.2 Vector and Scalar Potentials 239
    6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge 240
    6.4 Green Functions for the Wave Equation 243
    6.5 Retarded Solutions for the Fields: Jefimenko's Generalizations of the Coulomb and Biot-Savart Laws; Heaviside-Feynman Expressions for Fields of Point Charge 246
    6.6 Derivation of the Equations of Macroscopic Electromagnetism 248
    6.7 Poynting's Theorem and Conservation of Energy and Momentum for a System of Charged Particles and Electromagnetic Fields 258
    6.8 Poynting's Theorem in Linear Dissipative Media with Losses 262
    6.9 Poynting's Theorem for Harmonic Fields; Field Definitions of Impedance and Admittance 264
    6.10 Transformation Properties of Electromagnetic Fields and Sources Under Rotations, Spatial Reflections, and Time Reversal 267
    6.11 On the Question of Magnetic Monopoles 273
    6.12 Discussion of the Dirac Quantization Condition 275
    6.13 Polarization Potentials (Hertz Vectors) 280
    References and Suggested Reading 282
    Problems 283
    Chapter 7 / Plane Electromagnetic Waves and Wave Propagation 295
    7.1 Plane Waves in a Nonconducting Medium 295
    7.2 Linear and Circular Polarization; Stokes Parameters 299
    7.3 Reflection and Refraction of Electromagnetic Waves at a Plane Interface Between Two Dielectrics 302
    7.4 Polarization by Reflection, Total Internal Reflection; Goos-Hanchen Effect 306
    7.5 Frequency Dispersion Characteristics of Dielectrics, Conductors, and Plasmas 309
    7.6 Simplified Model of Propagation in the Ionosphere and Magnetosphere 316
    7.7 Magnetohydrodynamic Waves 319
    7.8 Superposition of ,Waves in One Dimension; Group Velocity 322
    7.9 Illustration of the Spreading of a Pulse As It Propagates in a Dispersive Medium 326
    7.10 Causality in the Connection Between D and E; Kramers-Kronig Relations 330
    7.11 Arrival of a Signal After Propagation Through a Dispersive Medium 335
    References and Suggested Reading 339
    Problems 340
    Chapter 8 / Waveguides, Resonant Cavities, and Optical Fibers 352
    8.1 Fields at the Surface of and Within a Conductor 352
    8.2 Cylindrical Cavities and Waveguides 356
    8.3 Waveguides 359
    8.4 Modes in a Rectangular Waveguide 361
    8.5 Energy Flow and Attenuation in Waveguides 363
    8.6 Perturbation of Boundary Conditions 366
    8.7 Resonant Cavities 368
    8.8 Power Losses in a Cavity; Q of a Cavity 371
    8.9 Earth and Ionosphere as a Resonant Cavity: Schumann Resonances 374
    8.10 Multimode Propagation in Optical Fibers 378
    8.11 Modes in Dielectric Waveguides 385
    8.12 Expansion in Normal Modes; Fields Generated by a Localized Source in a Hollow Metallic Guide 389
    References and Suggested Reading 395
    Problems 396
    Chapter 9/Radiating Systems, Multipole Fields and Radiation 407
    9.1 Fields and Radiation of a Localized Oscillating Source 407
    9.2 Electric Dipole Fields and Radiation 410
    9.3 Magnetic Dipole and Electric Quadrupole Fields 413
    9.4 Center-Fed Linear Antenna 416
    9.5 Multipole Expansion for Localized Source or Aperture in Waveguide 419
    9.6 Spherical Wave Solutions of the Scalar Wave Equation 425
    9.7 Multipole Expansion of the Electromagnetic Fields 429
    9.8 Properties of Multipole Fields, Energy and Angular Momentum of Multipole Radiation 432
    9.9 Angular Distribution of Multipole Radiation 437
    9.10 Sources of Multipole Radiation; Multipole Moments 439
    9.11 Multipole Radiation in Atoms and Nuclei 442
    9.12 Multipole Radiation from a Linear, Center-Fed Antenna 444
    References and Suggested Reading 448
    Problems 449
    Chapter 10 / Scattering and Diffraction 456
    10.1 Scattering at Long Wavelengths 456
    10.2 Perturbation Theory of Scattering, Rayleigh's Explanation of the Blue Sky, Scattering by Gases and Liquids, Attenuation in Optical Fibers 462
    10.3 Spherical Wave Expansion of a Vector Plane Wave 471
    10.4 Scattering of Electromagnetic Waves by a Sphere 473
    10.5 Scalar Diffraction Theory 478
    10.6 Vector Equivalents of the Kirchhoff Integral 482
    10.7 Vectorial Diffraction Theory 485
    10.8 Babinet's Principle of Complementary Screens 488
    10.9 Diffraction by a Circular Aperture; Remarks on Small Apertures 490
    10.10 Scattering in the Short-Wavelength Limit 495
    10.11 Optical Theorem and Related Matters 500
    References and Suggested Reading 506
    Problems 507
    Chapter 11/Special Theory of Relativity 514
    11.1 The Situation Before 1900, Einstein's Two Postulates 515
    11.2 Some Recent Experiments 518
    11.3 Lorentz Transformations and Basic Kinematic Results of Special Relativity 524
    11.4 Addition of Velocities; 4-Velocity 530
    11.5 Relativistic Momentum and Energy of a Particle 533
    11.6 Mathematical Properties of the Space-Time of Special Relativity 539
    11.7 Matrix Representation of Lorentz Transformations, Infinitesimal Generators 543
    11.8 Thomas Precession 548
    11.9 Invariance of Electric Charge; Covariance of Electrodynamics 553
    11.10 Transformation of Electromagnetic Fields 558
    11.11 Relativistic Equation of Motion for Spin in Uniform or Slowly Varying External Fields 561
    11.12 Note on Notation and Units in Relativistic Kinematics 565
    References and Suggested Reading 566
    Problems 568
    Chapter 12/Dynamics of Relativistic Particles and Electromagnetic Fields 579
    12.1 Lagrangian and Hamiltonian for a Relativistic Charged Particle in External Electromagnetic Fields 579
    12.2 Motion in a Uniform, Static Magnetic Field 585
    12.3 Motion in Combined, Uniform, Static Electric and Magnetic Fields 586
    12.4 Particle Drifts in Nonuniform, Static Magnetic Fields 588
    12.5 Adiabatic Invariance of Flux Through Orbit of Particle 592
    12.6 Lowest Order Relativistic Corrections to the Lagrangian for Interacting Charged Particles: The Darwin Lagrangian 596
    12.7 Lagrangian for the Electromagnetic Field 598
    12.8 Proca Lagrangian; Photon Mass Effects 600
    12.9 Effective "Photon" Mass in Superconductivity; London Penetration Depth 603
    12.10 Canonical and Symmetric Stress Tensors; Conservation Laws 605
    12.11 Solution of the Wave Equation in Covariant Form; Invariant Green Functions 612
    References and Suggested Reading 615
    Problems 617
    Chapter 13/Collisions, Energy Loss, and Scattering of Charged Particles,Cherenkov and Transition Radiation 624
    13.1 Energy Transfer in Coulomb Collision Between Heavy Incident Particle and Free Electron; Energy Loss in Hard Collisions 625
    13.2 Energy Loss from Soft Collisions; Total Energy Loss 627
    13.3 Density Effect in Collisional Energy Loss 631
    13.4 Cherenkov Radiation 637
    13.5 Elastic Scattering of Fast Charged Particles by Atoms 640
    13.6 Mean Square Angle of Scattering; Angular Distribution of Multiple Scattering 643
    13.7 Transition Radiation 646
    References and Suggested Reading 654
    Problems 655
    Chapter 14/Radiation by Moving Charges 661
    14.1 Lienard-Wiechert Potentials and Fields for a Point Charge 661
    14.2 Total Power Radiated by an Accelerated Charge: Larmor's Formula and Its Relativistic Generalization 665
    14.3 Angular Distribution of Radiation Emitted by an Accelerated Charge 668
    14.4 Radiation Emitted by a Charge in Arbitrary, Extremely Relativistic Motion 671
    14.5 Distribution in Frequency and Angle of Energy Radiated by Accelerated Charges: Basic Results 673
    14.6 Frequency Spectrum of Radiation Emitted by a Relativistic Charged Particle in Instantaneously Circular Motion 676
    14.7 Undulators and Wigglers for Synchrotron Light Sources 683
    14.8 Thomson Scattering of Radiation 694
    References and Suggested Reading 697
    Problems 698
    Chapter 15 / Bremsstrahlung, Method of Virtual Quanta,Radiative Beta Processes 708
    15.1 Radiation Emitted During Collisions 709
    15.2 Bremsstrahlungin Coulomb Collisions 714
    15.3 Screening Effects; Relativistic Radiative Energy Loss 721
    15.4 Weizsficker-Williams Method of Virtual Quanta 724
    15.5 Bremsstrahlung as the Scattering of Virtual Quanta 729
    15.6 Radiation Emitted During Beta Decay 730
    15.7 Radiation Emitted During Orbital Electron Capture: Disappearance of Charge and Magnetic Moment 732
    References and Suggested Reading 737
    Problems 737
    Chapter 16 / Radiation Damping, Classical Models of Charged Particles 745
    16.1 Introductory Considerations 745
    16.2 Radiative Reaction Force from Conservation of Energy 747
    16.3 Abraham-Lorentz Evaluation of the Self-Force 750
    16.4 Relativistic Covariance; Stability and Poincar6 Stresses 755
    16.5 Covariant Definitions of Electromagnetic Energy and Momentum 757
    16.6 Covariant Stable Charged Particle 759
    16.7 Level Breadth and Level Shift of a Radiating Oscillator 763
    16.8 Scattering and Absorption of Radiation by an Oscillator 766
    References and Suggested Reading 768
    Problems 769
    Appendix on Units and Dimensions 775
    1 Units and Dimensions, Basic Units and Derived Units 775
    2 Electromagnetic Units and Equations 777
    3 Various Systems of Electromagnetic Units 779
    4 Conversion of Equations and Amounts Between SI Units
    and Gaussian Units 782
    Bibliography 785
    Index 791
查看详情
您可能感兴趣 / 更多
经典电动力学
抬高房梁,木匠们;西摩:小传(塞林格作品集)
J.D.塞林格
经典电动力学
九故事(塞林格作品集)
J.D.塞林格 著;丁骏 译
经典电动力学
麦田里的守望者(中英双语全本,孙仲旭译本)
J.D.塞林格 著;孙仲旭 译
经典电动力学
法语英语文体比较(语言学及应用语言学名著译丛)
J.Darbelnet 著;J.P.Vinay、陈国樑 译
经典电动力学
译林名著精选:麦田里的守望者(新版)
J.D.塞林格 著;施咸荣 译
经典电动力学
乡下人的悲歌
J.D.、万斯 著;刘晓同 庄逸抒 译
经典电动力学
iPad 2: The Missing Manual (Missing Manuals)
J.D. Biersdorfer 著
经典电动力学
The 16% Solution:How to Get High Interest Rates in a Low-Interest World with Tax Lien Certificates, Revised Edition
J.D. Joel S. Moskowitz
经典电动力学
PoetsoftheCivilWar
J.D.McClatchy 著
经典电动力学
Even Grues Get Full: The Fourth User Friendly Collection
J.D. "Illiad" Frazer 著
经典电动力学
PoemsoftheSea(EverymanPocketPoets)
J.D. McClatchy 著
经典电动力学
置换群
J.D.Dixon B.Mortimer