人寿保险数学 (第3版)

人寿保险数学 (第3版)
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者:
1999-10
版次: 3
ISBN: 9787506214704
定价: 39.00
装帧: 平装
开本: 24开
纸张: 其他
页数: 217页
分类: 经济
  • Twomajordevelopmentshaveinfluencedtheenvironmentofactuarialmath-ematics.Oneisthearrivalofpowerfulandaffordablecomputers;theonceimportantproblemofnumericalcalculationhasbecomealmosttrivialinmanyinstances.Theotheristhefactthattoday'sgenerationisquitefamiliarwithprobabilitytheoryinanintuitivesense;thebasicconceptsofprobabilitytheoryaretaughtatman),highschools.Thesetwofactorsshouldbetakenintoaccountintheteachingandlearningofactuarialmathematics.Afirstconsequenceis,forexample,thatarecursivealgorithm(forasolution)isasusefulasasolutionexpressedintermsofcommutationfunctions.Inmanycasesthecalculationsareeasy;thusthequestion"why"acalculationisdoneismuchmoreimportantthanthequestion"how"itisdone.Thesecondconsequenceisthatthesomewhatembarrassingdeterministicmodelcanbeabandoned;nowadaysnothingspeaksagainsttheuseofthestochasticmodel,whichbetterreflectsthemechanismsofinsurance.Thusthediscussiondoesnothavetobelimitedtoexpectedvalues;itcanbeextendedtothedeviationsfromtheexpectedvalues,therebyquantifyingtheriskinthepropersense. 1TheMathematicsofCompoundInterest
    1.1MathematicalBasesofLifeContingencies
    1.2EffectiveInterestRates
    1.3NominalInterestRates
    1.4ContinuousPayments
    1.5InterestinAdvance
    1.6Perpetuities
    1.7Annuities
    1.8RepaymentofaDebt
    1.9InternalRateofReturn

    2TheFutureLifetimeofaLifeAgedx
    2.1TheModel
    2.2TheForceofMortality
    2.3AnalyticalDistributionsofT
    2.4TheCurtateFutureLifetimeof(x)
    2.5LifeTables
    2.6ProbabilitiesofDeathforFractionsofaYear

    3LifeInsurance
    3.1Introduction
    3.2ElementaryInsuranceTypes
    3.2.1WholeLifeandTermInsurance
    3.2.2PureEndowments
    3.2.3Endowments
    3.3InsurancesPayableattheMomentofDeath
    3.4GeneralTypesofLifeInsurance
    3.5StandardTypesofVariableLifeInsurance
    3.6RecursiveFormulae

    4LifeAnnuities
    4.1Introduction
    4.2ElementaryLifeAnnuities
    4.3PaymentsmademoreFrequentlythanOnceaYear
    4.4VariableLifeAnnuities
    4.5StandardTypesofLifeAnnuituy
    4.6RecursionFormulae
    4.7Inequalities
    4.8PaymentsStartingatNon-iutegralAges

    5NetPremiums
    5.1Introduction
    5.2AnExample
    5.3ElementaryFormsofInsurance
    5.3.1WholeLifeandTermInsurance
    5.3.2PureEndowments
    5.3.3Endowments
    5.3.4DeferredLifeAnnuities
    5.4PremiumsPaidmTimesaYear
    5.5AGeneralTypeofLifeInsurance
    5.6PolicieswithPremiumRefund
    5.7StochasticInterest

    6NetPremiumReserves
    6.1Introduction
    6.2TwoExamples
    6.3RecursiveConsiderations
    6.4TheSurvivalRisk
    6.5TheNetPremiumReserveofaWholeLifeInsurance
    6.6NetPremiumReservesatFractionalDurations
    6.7AllocationoftheOverallLosstoPolicyYears
    6.8ConversionofanInsurance
    6.9TechnicalGain
    6.10ProcedureforPureEndowments
    6.11TheContinuousModel
    7MultipleDecrementsl
    8MultipleLifeInsurance
    9TheTotalClaimAmountinaPortfolio
    10ExpenseLoadings
    11EstimatingProbabilitiesofDeath
    AppendixA.CommutationFunctions
    AppendixB.SimpleInterest
    AppendixC.Exercises
    AppendixD.Solutions
    AppendixE.Tables
    References
    Index
  • 内容简介:
    Twomajordevelopmentshaveinfluencedtheenvironmentofactuarialmath-ematics.Oneisthearrivalofpowerfulandaffordablecomputers;theonceimportantproblemofnumericalcalculationhasbecomealmosttrivialinmanyinstances.Theotheristhefactthattoday'sgenerationisquitefamiliarwithprobabilitytheoryinanintuitivesense;thebasicconceptsofprobabilitytheoryaretaughtatman),highschools.Thesetwofactorsshouldbetakenintoaccountintheteachingandlearningofactuarialmathematics.Afirstconsequenceis,forexample,thatarecursivealgorithm(forasolution)isasusefulasasolutionexpressedintermsofcommutationfunctions.Inmanycasesthecalculationsareeasy;thusthequestion"why"acalculationisdoneismuchmoreimportantthanthequestion"how"itisdone.Thesecondconsequenceisthatthesomewhatembarrassingdeterministicmodelcanbeabandoned;nowadaysnothingspeaksagainsttheuseofthestochasticmodel,whichbetterreflectsthemechanismsofinsurance.Thusthediscussiondoesnothavetobelimitedtoexpectedvalues;itcanbeextendedtothedeviationsfromtheexpectedvalues,therebyquantifyingtheriskinthepropersense.
  • 目录:
    1TheMathematicsofCompoundInterest
    1.1MathematicalBasesofLifeContingencies
    1.2EffectiveInterestRates
    1.3NominalInterestRates
    1.4ContinuousPayments
    1.5InterestinAdvance
    1.6Perpetuities
    1.7Annuities
    1.8RepaymentofaDebt
    1.9InternalRateofReturn

    2TheFutureLifetimeofaLifeAgedx
    2.1TheModel
    2.2TheForceofMortality
    2.3AnalyticalDistributionsofT
    2.4TheCurtateFutureLifetimeof(x)
    2.5LifeTables
    2.6ProbabilitiesofDeathforFractionsofaYear

    3LifeInsurance
    3.1Introduction
    3.2ElementaryInsuranceTypes
    3.2.1WholeLifeandTermInsurance
    3.2.2PureEndowments
    3.2.3Endowments
    3.3InsurancesPayableattheMomentofDeath
    3.4GeneralTypesofLifeInsurance
    3.5StandardTypesofVariableLifeInsurance
    3.6RecursiveFormulae

    4LifeAnnuities
    4.1Introduction
    4.2ElementaryLifeAnnuities
    4.3PaymentsmademoreFrequentlythanOnceaYear
    4.4VariableLifeAnnuities
    4.5StandardTypesofLifeAnnuituy
    4.6RecursionFormulae
    4.7Inequalities
    4.8PaymentsStartingatNon-iutegralAges

    5NetPremiums
    5.1Introduction
    5.2AnExample
    5.3ElementaryFormsofInsurance
    5.3.1WholeLifeandTermInsurance
    5.3.2PureEndowments
    5.3.3Endowments
    5.3.4DeferredLifeAnnuities
    5.4PremiumsPaidmTimesaYear
    5.5AGeneralTypeofLifeInsurance
    5.6PolicieswithPremiumRefund
    5.7StochasticInterest

    6NetPremiumReserves
    6.1Introduction
    6.2TwoExamples
    6.3RecursiveConsiderations
    6.4TheSurvivalRisk
    6.5TheNetPremiumReserveofaWholeLifeInsurance
    6.6NetPremiumReservesatFractionalDurations
    6.7AllocationoftheOverallLosstoPolicyYears
    6.8ConversionofanInsurance
    6.9TechnicalGain
    6.10ProcedureforPureEndowments
    6.11TheContinuousModel
    7MultipleDecrementsl
    8MultipleLifeInsurance
    9TheTotalClaimAmountinaPortfolio
    10ExpenseLoadings
    11EstimatingProbabilitiesofDeath
    AppendixA.CommutationFunctions
    AppendixB.SimpleInterest
    AppendixC.Exercises
    AppendixD.Solutions
    AppendixE.Tables
    References
    Index
查看详情
12
相关图书 / 更多
人寿保险数学 (第3版)
人寿保险与索赔理赔
余志远 著
人寿保险数学 (第3版)
人寿保险代理人市场行为规范——金融学译丛
迪尔伯恩金融服务公司 主编;王珺 译
人寿保险数学 (第3版)
人寿保险财务核保
欧阳天娜 主编
人寿保险数学 (第3版)
人寿保险的经济分析引论
卓 著
人寿保险数学 (第3版)
人寿保险多元化行销渠道及其监管
孟昭亿 编
人寿保险数学 (第3版)
人寿保险个人理财新工具
赵猛 著
人寿保险数学 (第3版)
人寿保险(第十二版)
肯尼思.布莱克 哈罗德.斯基珀
人寿保险数学 (第3版)
人寿保险理论与实务
陶存文 编著
人寿保险数学 (第3版)
人寿与健康保险/21世纪经济与管理规划教材·保险学系列
荆涛 著
人寿保险数学 (第3版)
人寿保险理赔调查
欧阳天娜
人寿保险数学 (第3版)
人寿与健康保险——保险名著译丛(第八版)
[美]克劳福特 著;周伏平 译
人寿保险数学 (第3版)
人寿与健康保险(第3版)(高等学校保险学专业系列教材)
刘金章、王晓珊 著