数学分析教程(上册)

数学分析教程(上册)
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者:
出版社: 高等教育出版社
2003-05
版次: 1
ISBN: 9787040119206
定价: 39.20
装帧: 平装
开本: 16开
纸张: 其他
页数: 493页
正文语种: 简体中文
  • 《数学分析教程(上册)》是普通高等教育“十五”国家级规划教材,是在1998年江苏教育出版社出版的《数学分析教程》的基础上作了较大的改动而成的,原书在全国同类教材中有非常积极的影响。《数学分析教程(上册)》分上、下两册。上册内容包括:实数和数列极限,函数的连续性,函数的导数,一元微分学的基本定理,插值与逼近初步,求导的逆运算,函数的积分,曲线的表示和逼近,数项级数,函数列与函数项级数等。《数学分析教程(上册)》可供综合性大学和理工科院校数学系作为教材使用,也可作为其他科研人员的参考书。 第1章实数和数列极限
    1.1数轴
    1.2无尽小数
    1.3数列和收敛数列
    1.4收敛数列的性质
    1.5数列极限概念的推广
    1.6单调数列
    1.7自然对数底e
    1.8基本列和收敛原理
    1.9上确界和下确界
    1.10有限覆盖定理
    1.11上极限和下极限
    1.12Stolz定理
    1.13数列极限的应用

    第2章函数的连续性
    2.1集合的映射
    2.2集合的势
    2.3函数
    2.4函数的极限
    2.5极限过程的其他形式
    2.6无穷小与无穷大
    2.7连续函数
    2.8连续函数与极限计算
    2.9函数的一致连续性
    2.10有限闭区间上连续函数的性质
    2.11函数的上极限和下极限
    2.12混沌现象

    第3章函数的导数
    3.1导数的定义
    3.2导数的计算
    3.3高阶导数
    3.4微分学的中值定理
    3.5利用导数研究函数
    3.6LHospital法则
    3.7函数作图

    第4章一元微分学的顶峰——Taylor定理
    4.1函数的微分
    4.2带Peano余项的Taylor定理
    4.3带Lagrange余项和Cauchy余项的Taylor定理
    第5章插值与逼近初步
    5.1Lagrange插值公式
    5.2多项式的Bernstein表示
    5.3Bernstein多项式

    第6章求导的逆运算
    6.1原函数的概念
    6.2分部积分和换元法
    6.3有理函数的原函数
    6.4可有理化函数的原函数

    第7章函数的积分
    7.1积分的概念
    7.2可积函数的性质
    7.3微积分基本定理
    7.4分部积分与换元
    7.5可积性理论
    7.6Lebesgue定理
    7.7反常积分
    7.8面积原理
    7.9Wallis公式和Stirling公式
    7.10数值积分
    第8章曲线的表示和逼近
    8.1参数曲线
    8.2曲线的切向量
    8.3光滑曲线的弧长
    8.4曲率

    第9章数项级数
    9.1无穷级数的基本性质
    9.2正项级数的比较判别法
    9.3正项级数的其他判别法
    9.4一般级数
    9.5绝对收敛和条件收敛
    9.6级数的乘法
    9.7无穷乘积

    第10章函数列与函数项级数
    10.1问题的提出
    10.2一致收敛
    10.3极限函数与和函数的性质
    10.4由幂级数确定的函数
    10.5函数的幂级数展开式
    10.6用多项式一致逼近连续函数
    10.7幂级数在组合数学中的应用
    10.8从两个著名的例子谈起
    附录问题的解答与提示
  • 内容简介:
    《数学分析教程(上册)》是普通高等教育“十五”国家级规划教材,是在1998年江苏教育出版社出版的《数学分析教程》的基础上作了较大的改动而成的,原书在全国同类教材中有非常积极的影响。《数学分析教程(上册)》分上、下两册。上册内容包括:实数和数列极限,函数的连续性,函数的导数,一元微分学的基本定理,插值与逼近初步,求导的逆运算,函数的积分,曲线的表示和逼近,数项级数,函数列与函数项级数等。《数学分析教程(上册)》可供综合性大学和理工科院校数学系作为教材使用,也可作为其他科研人员的参考书。
  • 目录:
    第1章实数和数列极限
    1.1数轴
    1.2无尽小数
    1.3数列和收敛数列
    1.4收敛数列的性质
    1.5数列极限概念的推广
    1.6单调数列
    1.7自然对数底e
    1.8基本列和收敛原理
    1.9上确界和下确界
    1.10有限覆盖定理
    1.11上极限和下极限
    1.12Stolz定理
    1.13数列极限的应用

    第2章函数的连续性
    2.1集合的映射
    2.2集合的势
    2.3函数
    2.4函数的极限
    2.5极限过程的其他形式
    2.6无穷小与无穷大
    2.7连续函数
    2.8连续函数与极限计算
    2.9函数的一致连续性
    2.10有限闭区间上连续函数的性质
    2.11函数的上极限和下极限
    2.12混沌现象

    第3章函数的导数
    3.1导数的定义
    3.2导数的计算
    3.3高阶导数
    3.4微分学的中值定理
    3.5利用导数研究函数
    3.6LHospital法则
    3.7函数作图

    第4章一元微分学的顶峰——Taylor定理
    4.1函数的微分
    4.2带Peano余项的Taylor定理
    4.3带Lagrange余项和Cauchy余项的Taylor定理
    第5章插值与逼近初步
    5.1Lagrange插值公式
    5.2多项式的Bernstein表示
    5.3Bernstein多项式

    第6章求导的逆运算
    6.1原函数的概念
    6.2分部积分和换元法
    6.3有理函数的原函数
    6.4可有理化函数的原函数

    第7章函数的积分
    7.1积分的概念
    7.2可积函数的性质
    7.3微积分基本定理
    7.4分部积分与换元
    7.5可积性理论
    7.6Lebesgue定理
    7.7反常积分
    7.8面积原理
    7.9Wallis公式和Stirling公式
    7.10数值积分
    第8章曲线的表示和逼近
    8.1参数曲线
    8.2曲线的切向量
    8.3光滑曲线的弧长
    8.4曲率

    第9章数项级数
    9.1无穷级数的基本性质
    9.2正项级数的比较判别法
    9.3正项级数的其他判别法
    9.4一般级数
    9.5绝对收敛和条件收敛
    9.6级数的乘法
    9.7无穷乘积

    第10章函数列与函数项级数
    10.1问题的提出
    10.2一致收敛
    10.3极限函数与和函数的性质
    10.4由幂级数确定的函数
    10.5函数的幂级数展开式
    10.6用多项式一致逼近连续函数
    10.7幂级数在组合数学中的应用
    10.8从两个著名的例子谈起
    附录问题的解答与提示
查看详情
12
好书推荐 / 更多
数学分析教程(上册)
侧看成峰:葛兆光海外学术论著评论集(精)
葛兆光 著
数学分析教程(上册)
病床边的陌生人:法律与生命伦理学塑造医学决策的历史
Rothman 著;[美]戴维·J.罗思曼(David、J.、潘驿炜 译
数学分析教程(上册)
甲骨文丛书·恐惧与自由:第二次世界大战如何改变了我们
基思·罗威(Keith Lowe) 著;朱邦芊 译
数学分析教程(上册)
果麦经典:平面国(数学界的超级文化符号,《三体》二向箔的灵感来源,理解维度概念的绝佳途径。)
鲁冬旭 译者;果麦文化 出品;埃德温·A·艾勃特
数学分析教程(上册)
天生有罪: 特雷弗·诺亚的变色人生(精装珍藏版)
[南非]特雷弗·诺亚 著;董帅 译;未读 出品
数学分析教程(上册)
《末代沙皇:罗曼诺夫王朝的覆灭》(再现末代沙皇的真实面孔与罗曼诺夫王朝的命运终章)
道洛什·久尔吉 著;何剑 译
数学分析教程(上册)
版本与目录
辛德勇
数学分析教程(上册)
生死有时:美国医院如何形塑死亡
[美]莎伦·考夫曼 著 ;初丽岩;王清伟
数学分析教程(上册)
带着花椒去上朝:古杀十九式
马陈兵
数学分析教程(上册)
与自然和谐:低碳社会的环境观
[日]稻盛和夫 著;陈琳珊 译
数学分析教程(上册)
5G机会:5G将带来哪些机会,如何把握?
项立刚 著
数学分析教程(上册)
胆小鬼俱乐部:为什么美国司法部治不了大公司高管
[美]杰西·艾辛格 著;崔松 译