非晶态固体:结构和特性(英文版)

非晶态固体:结构和特性(英文版)
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: [澳] ,
2015-05
版次: 1
ISBN: 9787040426298
定价: 99.00
装帧: 精装
开本: 16开
纸张: 胶版纸
页数: 287页
字数: 360千字
正文语种: 简体中文,英语
分类: 语言文字
9人买过
  •   《材料与力学进展·非晶态固体:结构和特性(英文版)》采用独特的方法阐述了非晶态固体的基础理论。将非晶态固体分为无机玻璃、有机玻璃、玻璃金属合金和薄膜四类,构建了非晶态固体的结构模型,定义了理想的非晶体固体的原子排列,澄清了玻璃固体中非晶态原子排列的奥秘。
      《材料与力学进展·非晶态固体:结构和特性(英文版)》的主要读者对象为材料科学、固体物理等领域的科研人员。   Zbigniew H. Stachurski,澳大利亚国立大学教授。1965年本科毕业于波兰 AGH 科技大学( Krakow),1968年博士毕业于英国Bristol大学。1991年当选澳大利亚皇家化学学会会员,1993年获皇家化学学会“聚合物材料突出贡献奖”。2002年任澳大利亚国立大学材料中心主任。为英国、瑞士、希腊、新加坡等多所高校的访问教授。会讲5种语言:English, Polish, Ukrainian, French, Russian. Preface
    1Spheres,ClustersandPackingofSpheres
    1.1Introduction
    1.2GeometryofSpheres
    1.2.1ASphereandItsNeighbours
    1.2.2NeighboursbyTouching
    1.2.3HardandSoftSpheres
    1.3GeometryofClusters
    1.3.1RegularClusters
    1.3.2IrregularClusters
    1.3.3Coordinationof(1+k)Clusters
    1.3.3.1BlockingModelforClusterFormation
    1.3.3.2FurthModelforClusterFormation
    1.3.4Configurationof(1+k)Clusters
    1.3.4.1RegularClusters
    1.3.4.2IrregularClusters
    1.3.4.3ClosingVectorBasedonRadialVectorPolygon
    1.3.4.4PhysicalMeaningoftheClosingVector,
    1.3.4.5SphericalHarmonics
    1.4GeometryofSpherePackings
    1.4.1FixedandLoosePackings
    1.4.2OrderedPacking
    1.4.3DisorderedPacking
    1.4.4RandomPacking
    1.4.5RandomSequentialAdditionofHardSpheres
    1.4.6RandomClosedPackingofSpheres
    1.4.7NeighboursbyVoronoiTessellation
    1.4.8NeighboursbyCoordinationShell
    1.4.8.1PairDistributionFunction
    1.4.8.2TheProbabilityofContacts
    1.4.8.3ContactConfigurationFunction
    1.9.4ShortandMediumRangeOrder
    References
    BooksonCrystallography
    BooksonGlasses
    BooksonRandomWalks
    BooksonSpherePackings
    BooksonCrystalImperfections

    2CharacteristicsofSpherePackings
    2.1GeometricalProperties
    2.1.1TheCoordinationDistributionFunction,~P(k)
    2.1.2Tetrahedricity
    2.1.3VoronoiPolyhedraNotation
    2.1.4TopologyofClusters
    2.1.4.1OrderedClusters
    2.1.4.2IrregularClusters
    2.1.5TheConfigurationDistributionFunction,Φk(ζ)
    2.1.6TheVolumeFraction
    2.1.6.1RegularPolyhedra
    2.1.6.2IrregularPolyhedra
    2.1.7ThePackingFraction
    2.1.7.1TheAveragePackingFractionfortheRoundCell
    2.1.7.2TheLocalPackingFraction
    2.1.7.3TheLimitsofPackingFraction
    2.1.8RepresentativeVolumeElement
    2.1.9DensityofSinglePhase
    2.1.9.1DensityofCrystallineSolid
    2.1.9.2DensityofAmorphousSolid
    2.1.10DensityofaComposite
    2.1.11SolidityofPacking
    2.2X-rayScattering
    2.2.1Introduction
    2.2.2GeometryofDiffractionandScattering
    2.2.3IntensityofaScatteredWave
    2.2.3.1AmorphousSolid
    2.2.3.2EhrenfestFormula
    2.2.3.3PolyatomicSolid
    2.2.4FactorsAffectingIntegratedScatteredIntensity
    2.2.4.1IntegratedIntensityofPowderPatternLinesfromCrystallineBody
    2.2.4.2IntegratedScatteredIntensityfromMonoatomicBody
    2.3GlassTransitionMeasuredbyCalorimetry
    References

    3GlassyMaterialsandIdealAmorphousSolids
    3.1Introduction
    3.1.1Solidification
    3.1.1.1SolidificationbyMeansofCrystallization
    3.1.1.2SolidificationthroughVitrification
    3.1.2CognateGroupsofAmorphousMaterials(Glasses)
    3.1.2.1MetallicGlasses
    3.1.2.2InorganicGlasses
    3.1.2.3OrganicGlasses
    3.1.2.4AmorphousThinFilms
    3.2SummaryofModelsofAmorphousSolids
    3.2.1LatticewithAtomicDisorder
    3.2.2DisorderedClustersonLattice
    3.2.3GeometricModelsforAmorphousNetworks
    3.2.4PackingofRegularbutIncongruentClusters
    3.2.5IrregularClusters-RandomPacking
    3.2.6MolecularDynamics
    3.2.7MonteCarloMethod
    3.3IASModelofa-Argon
    3.3.1IASParameters
    3.3.2RoundCellSimulationandAnalysis
    3.3.2.1CoordinationDistributionFunction
    3.3.2.2VoronoiVolumeandConfigurationDistributionFunctions
    3.3.2.3RadialDistributionFunction
    3.3.2.4X-rayScatteringfromtheIASModel
    3.3.2.5CrystallineandAmorphousCluster
    3.3.3Summaryofa-ArIASStructure
    3.4IASModelofa-NiNbAlloy
    3.4.1Introduction
    3.4.2IASModelofa-NiNbAlloy
    3.4.2.1CoordinationDistributionFunctions
    3.4.2.2VoronoiVolumeDistribution
    3.4.2.3PairDistributionFunction
    3.4.2.4ProbabilityofContacts
    3.4.3X-rayScatteringfroma-NiNbAlloy
    3.4.3.1ExperimentalResults
    3.4.3.2TheoreticalResults
    3.4.4Densityofa-Ni62-Nb38Alloy
    3.4.4.1CrystallineAlloy
    3.4.4.2AmorphousAlloy
    3.4.5Summaryofa-NiNbIASStructure
    3.5IASModelofa-MgCuGdAlloy
    3.5.1PhysicalPropertiesoftheElements
    3.5.2IASSimulationofa-MgCuGdAlloy
    3.5.2.1CoordinationDistributionFunctions
    3.5.2.2ConfigurationDistributionFunction
    3.5.2.3RadialDistributionFunction
    3.5.2.4ProbabilityofContacts
    3.5.2.5ClusterCompositionAccordingtoIAS
    3.5.2.6ClusterCompositionAccordingtoMD
    3.5.3X-rayScatteringfroma-Mg65-Cu25-Gd10Alloy
    3.5.3.1FiatPlateX-rayScatteringPattern
    3.5.3.2CalibrationbasedonSiPowderPattern
    3.5.3.3UncertaintiesandCorrections
    3.5.4DensityofMg65-Cu25-Gd10Alloy
    3.5.4.1CrystallineAlloy
    3.5.4.2AmorphousAlloy
    3.5.5Summaryofa-MgCuGd1ASStructure
    3.6IASModelofa-ZrTiCuNiBeAlloy
    3.6.1TransmissionElectronMicroscopy
    3.6.2IASSimulationofAmorphousa-ZrTiCuNiBeAlloy
    3.6.2.1CoordinationDistributionFunction
    3.6.2.2VoronoiVolumeDistribution
    3.6.2.3RadialDistributionFunction
    3.6.3AtomicProbeofthea-ZrTiCuNiBeAlloy
    3.6.3.1ProbabilityofContacts
    3.6.4SelectedClustersfromthea-ZrTiCuNiBeAlloy
    3.6.5X-rayScatteringfromthea-ZrTiCuNiBeAlloy
    3.6.6DensityofZrTiCuNiBeAlloy
    3.6.6.1CrystallineAlloy
    3.6.6.2AmorphousAlloy
    3.6.6.3VitreloyAlloys
    3.6.7Summaryofa-ZrTiCuNiBeIASStructure
    3.7IASModelofa-Polyethylene(a-PE)
    3.7.1RadialDistributionFunction
    3.7.2X-rayScattering
    3.7.2.1Short-RangeOrder
    3.7.3Summaryofa-PEIASStructure
    3.8IASModelofa-Silica(a-SiO2)
    3.8.1MolecularParametersforSiO2
    3.8.2IASandUnitedAtomModelsforSiO2
    3.8.3Summaryofa-SiO2IASStructure
    3.9ChalcogenideGlasses
    3.9.1As12-Ge33-Se55ChalcogenideGlass
    3.9.2MeasuredCoordinationDistribution
    3.9.3MeasuredX-rayScattering
    3.9.4Glass-TransitionTemperatureofAsGeSeGlasses
    3.9.5ModelsofAtomicArrangementsinAsGeSeGlass
    3.9.5.1IASModelofAsGeSeGlass
    3.9.5.2OtherModelsofAsGeSeGlass
    3.9.6Summaryofa-AsGeSeIASStructure
    3.10ConcludingRemarks
    3.10.1Chapter3
    3.10.2Chapter2
    References

    4MechanicalBehaviour
    4.1Introduction
    4.2Elasticity
    4.2.1Phenomenology
    4.2.2ContinuumMechanics
    4.2.2.1CalculationofAverageElasticConstants-AggregateTheory
    4.2.2.2Green'sElasticStrainEnergy
    4.2.3AtomisticElasticity
    4.2.3.1CalculationofanElasticConstantforSingleCrystalofArgon
    4.3ElasticPropertiesofAmorphousSolids
    4.3.1ElasticModulusofAmorphousArgon
    4.4Fracture
    4.4.1Phenomenology
    4.4.2ContinuumMechanics
    4.4.2.1DefinitionofFractureMechanics:FractureToughness
    4.4.2.2ElasticStrainEnergyRelease
    4.4.2.3SolidSurfaceEnergy
    4.4.2.4Griffith'sFractureStress
    4.4.2.5TheRoleofDefects
    4.4.3AtomisticFractureMechanicsofSolids
    4.4.3.1TheoreticalCleavageStrength
    4.4.3.2TheoreticalShearStrength
    4.5Plasticity
    4.5.1Phenomenology
    4.5.2ContinummMechanics
    4.5.2.1TrescaYieldCriterion
    4.5.2.2Huber-vonMisesCriterion
    4.5.3AtomisticMechanicsofCrystallineSolids
    4.5.3.1StrainHardening
    4.5.3.2GrainBoundaryStrengthening
    4.5.3.3SolidSolutionHardening
    4.5.3.4PrecipitationHardening
    4.5.3.5MechanismsofPlasticFlowinCrystallineMaterials
    4.5.3.6DisplacementofAtomsAroundDislocations
    4.5.3.7CriticalShearStresstoMoveDislocation
    4.6PlasticityinPlasticity:AmorphousSolids
    4.6.1PlasticDeformationbyShearBandPropagation
    4.7Superplasticity
    4.7.1Phenomenology
    4.7.2ContinuumMechanics
    4.7.3SuperplasticityinBulkMetallicGlasses
    4.7.3.1CalculationofStrainRateforSuperplasticity
    4.7.4ConcordantDeformationMechanism
    4.7.4.1DensityVariationinAmorphousSolids
    4.7.4.2The'Inclusion'Problem
    4.7.4.3TheSystemwithoutTransformation
    4.7.4.4TheSystemwithTransformation
    4.7.4.5Conclusions
    4.8Viscoelasticity
    4.8.1Phenomenology
    4.8.2Time-andTemperature-DependentBehaviour
    4.8.2.1DefinitionsofViscosity
    4.8.2.2OrderofMagnitudeCalculations
    4.8.3TemperatureEffectonViscoelasticBehaviour
    4.8.3.1ArrheniusBehaviour
    4.8.3.2Vogel-Fulcher-TammannBehaviour
    References
    Index
    ColorPlots
  • 内容简介:
      《材料与力学进展·非晶态固体:结构和特性(英文版)》采用独特的方法阐述了非晶态固体的基础理论。将非晶态固体分为无机玻璃、有机玻璃、玻璃金属合金和薄膜四类,构建了非晶态固体的结构模型,定义了理想的非晶体固体的原子排列,澄清了玻璃固体中非晶态原子排列的奥秘。
      《材料与力学进展·非晶态固体:结构和特性(英文版)》的主要读者对象为材料科学、固体物理等领域的科研人员。
  • 作者简介:
      Zbigniew H. Stachurski,澳大利亚国立大学教授。1965年本科毕业于波兰 AGH 科技大学( Krakow),1968年博士毕业于英国Bristol大学。1991年当选澳大利亚皇家化学学会会员,1993年获皇家化学学会“聚合物材料突出贡献奖”。2002年任澳大利亚国立大学材料中心主任。为英国、瑞士、希腊、新加坡等多所高校的访问教授。会讲5种语言:English, Polish, Ukrainian, French, Russian.
  • 目录:
    Preface
    1Spheres,ClustersandPackingofSpheres
    1.1Introduction
    1.2GeometryofSpheres
    1.2.1ASphereandItsNeighbours
    1.2.2NeighboursbyTouching
    1.2.3HardandSoftSpheres
    1.3GeometryofClusters
    1.3.1RegularClusters
    1.3.2IrregularClusters
    1.3.3Coordinationof(1+k)Clusters
    1.3.3.1BlockingModelforClusterFormation
    1.3.3.2FurthModelforClusterFormation
    1.3.4Configurationof(1+k)Clusters
    1.3.4.1RegularClusters
    1.3.4.2IrregularClusters
    1.3.4.3ClosingVectorBasedonRadialVectorPolygon
    1.3.4.4PhysicalMeaningoftheClosingVector,
    1.3.4.5SphericalHarmonics
    1.4GeometryofSpherePackings
    1.4.1FixedandLoosePackings
    1.4.2OrderedPacking
    1.4.3DisorderedPacking
    1.4.4RandomPacking
    1.4.5RandomSequentialAdditionofHardSpheres
    1.4.6RandomClosedPackingofSpheres
    1.4.7NeighboursbyVoronoiTessellation
    1.4.8NeighboursbyCoordinationShell
    1.4.8.1PairDistributionFunction
    1.4.8.2TheProbabilityofContacts
    1.4.8.3ContactConfigurationFunction
    1.9.4ShortandMediumRangeOrder
    References
    BooksonCrystallography
    BooksonGlasses
    BooksonRandomWalks
    BooksonSpherePackings
    BooksonCrystalImperfections

    2CharacteristicsofSpherePackings
    2.1GeometricalProperties
    2.1.1TheCoordinationDistributionFunction,~P(k)
    2.1.2Tetrahedricity
    2.1.3VoronoiPolyhedraNotation
    2.1.4TopologyofClusters
    2.1.4.1OrderedClusters
    2.1.4.2IrregularClusters
    2.1.5TheConfigurationDistributionFunction,Φk(ζ)
    2.1.6TheVolumeFraction
    2.1.6.1RegularPolyhedra
    2.1.6.2IrregularPolyhedra
    2.1.7ThePackingFraction
    2.1.7.1TheAveragePackingFractionfortheRoundCell
    2.1.7.2TheLocalPackingFraction
    2.1.7.3TheLimitsofPackingFraction
    2.1.8RepresentativeVolumeElement
    2.1.9DensityofSinglePhase
    2.1.9.1DensityofCrystallineSolid
    2.1.9.2DensityofAmorphousSolid
    2.1.10DensityofaComposite
    2.1.11SolidityofPacking
    2.2X-rayScattering
    2.2.1Introduction
    2.2.2GeometryofDiffractionandScattering
    2.2.3IntensityofaScatteredWave
    2.2.3.1AmorphousSolid
    2.2.3.2EhrenfestFormula
    2.2.3.3PolyatomicSolid
    2.2.4FactorsAffectingIntegratedScatteredIntensity
    2.2.4.1IntegratedIntensityofPowderPatternLinesfromCrystallineBody
    2.2.4.2IntegratedScatteredIntensityfromMonoatomicBody
    2.3GlassTransitionMeasuredbyCalorimetry
    References

    3GlassyMaterialsandIdealAmorphousSolids
    3.1Introduction
    3.1.1Solidification
    3.1.1.1SolidificationbyMeansofCrystallization
    3.1.1.2SolidificationthroughVitrification
    3.1.2CognateGroupsofAmorphousMaterials(Glasses)
    3.1.2.1MetallicGlasses
    3.1.2.2InorganicGlasses
    3.1.2.3OrganicGlasses
    3.1.2.4AmorphousThinFilms
    3.2SummaryofModelsofAmorphousSolids
    3.2.1LatticewithAtomicDisorder
    3.2.2DisorderedClustersonLattice
    3.2.3GeometricModelsforAmorphousNetworks
    3.2.4PackingofRegularbutIncongruentClusters
    3.2.5IrregularClusters-RandomPacking
    3.2.6MolecularDynamics
    3.2.7MonteCarloMethod
    3.3IASModelofa-Argon
    3.3.1IASParameters
    3.3.2RoundCellSimulationandAnalysis
    3.3.2.1CoordinationDistributionFunction
    3.3.2.2VoronoiVolumeandConfigurationDistributionFunctions
    3.3.2.3RadialDistributionFunction
    3.3.2.4X-rayScatteringfromtheIASModel
    3.3.2.5CrystallineandAmorphousCluster
    3.3.3Summaryofa-ArIASStructure
    3.4IASModelofa-NiNbAlloy
    3.4.1Introduction
    3.4.2IASModelofa-NiNbAlloy
    3.4.2.1CoordinationDistributionFunctions
    3.4.2.2VoronoiVolumeDistribution
    3.4.2.3PairDistributionFunction
    3.4.2.4ProbabilityofContacts
    3.4.3X-rayScatteringfroma-NiNbAlloy
    3.4.3.1ExperimentalResults
    3.4.3.2TheoreticalResults
    3.4.4Densityofa-Ni62-Nb38Alloy
    3.4.4.1CrystallineAlloy
    3.4.4.2AmorphousAlloy
    3.4.5Summaryofa-NiNbIASStructure
    3.5IASModelofa-MgCuGdAlloy
    3.5.1PhysicalPropertiesoftheElements
    3.5.2IASSimulationofa-MgCuGdAlloy
    3.5.2.1CoordinationDistributionFunctions
    3.5.2.2ConfigurationDistributionFunction
    3.5.2.3RadialDistributionFunction
    3.5.2.4ProbabilityofContacts
    3.5.2.5ClusterCompositionAccordingtoIAS
    3.5.2.6ClusterCompositionAccordingtoMD
    3.5.3X-rayScatteringfroma-Mg65-Cu25-Gd10Alloy
    3.5.3.1FiatPlateX-rayScatteringPattern
    3.5.3.2CalibrationbasedonSiPowderPattern
    3.5.3.3UncertaintiesandCorrections
    3.5.4DensityofMg65-Cu25-Gd10Alloy
    3.5.4.1CrystallineAlloy
    3.5.4.2AmorphousAlloy
    3.5.5Summaryofa-MgCuGd1ASStructure
    3.6IASModelofa-ZrTiCuNiBeAlloy
    3.6.1TransmissionElectronMicroscopy
    3.6.2IASSimulationofAmorphousa-ZrTiCuNiBeAlloy
    3.6.2.1CoordinationDistributionFunction
    3.6.2.2VoronoiVolumeDistribution
    3.6.2.3RadialDistributionFunction
    3.6.3AtomicProbeofthea-ZrTiCuNiBeAlloy
    3.6.3.1ProbabilityofContacts
    3.6.4SelectedClustersfromthea-ZrTiCuNiBeAlloy
    3.6.5X-rayScatteringfromthea-ZrTiCuNiBeAlloy
    3.6.6DensityofZrTiCuNiBeAlloy
    3.6.6.1CrystallineAlloy
    3.6.6.2AmorphousAlloy
    3.6.6.3VitreloyAlloys
    3.6.7Summaryofa-ZrTiCuNiBeIASStructure
    3.7IASModelofa-Polyethylene(a-PE)
    3.7.1RadialDistributionFunction
    3.7.2X-rayScattering
    3.7.2.1Short-RangeOrder
    3.7.3Summaryofa-PEIASStructure
    3.8IASModelofa-Silica(a-SiO2)
    3.8.1MolecularParametersforSiO2
    3.8.2IASandUnitedAtomModelsforSiO2
    3.8.3Summaryofa-SiO2IASStructure
    3.9ChalcogenideGlasses
    3.9.1As12-Ge33-Se55ChalcogenideGlass
    3.9.2MeasuredCoordinationDistribution
    3.9.3MeasuredX-rayScattering
    3.9.4Glass-TransitionTemperatureofAsGeSeGlasses
    3.9.5ModelsofAtomicArrangementsinAsGeSeGlass
    3.9.5.1IASModelofAsGeSeGlass
    3.9.5.2OtherModelsofAsGeSeGlass
    3.9.6Summaryofa-AsGeSeIASStructure
    3.10ConcludingRemarks
    3.10.1Chapter3
    3.10.2Chapter2
    References

    4MechanicalBehaviour
    4.1Introduction
    4.2Elasticity
    4.2.1Phenomenology
    4.2.2ContinuumMechanics
    4.2.2.1CalculationofAverageElasticConstants-AggregateTheory
    4.2.2.2Green'sElasticStrainEnergy
    4.2.3AtomisticElasticity
    4.2.3.1CalculationofanElasticConstantforSingleCrystalofArgon
    4.3ElasticPropertiesofAmorphousSolids
    4.3.1ElasticModulusofAmorphousArgon
    4.4Fracture
    4.4.1Phenomenology
    4.4.2ContinuumMechanics
    4.4.2.1DefinitionofFractureMechanics:FractureToughness
    4.4.2.2ElasticStrainEnergyRelease
    4.4.2.3SolidSurfaceEnergy
    4.4.2.4Griffith'sFractureStress
    4.4.2.5TheRoleofDefects
    4.4.3AtomisticFractureMechanicsofSolids
    4.4.3.1TheoreticalCleavageStrength
    4.4.3.2TheoreticalShearStrength
    4.5Plasticity
    4.5.1Phenomenology
    4.5.2ContinummMechanics
    4.5.2.1TrescaYieldCriterion
    4.5.2.2Huber-vonMisesCriterion
    4.5.3AtomisticMechanicsofCrystallineSolids
    4.5.3.1StrainHardening
    4.5.3.2GrainBoundaryStrengthening
    4.5.3.3SolidSolutionHardening
    4.5.3.4PrecipitationHardening
    4.5.3.5MechanismsofPlasticFlowinCrystallineMaterials
    4.5.3.6DisplacementofAtomsAroundDislocations
    4.5.3.7CriticalShearStresstoMoveDislocation
    4.6PlasticityinPlasticity:AmorphousSolids
    4.6.1PlasticDeformationbyShearBandPropagation
    4.7Superplasticity
    4.7.1Phenomenology
    4.7.2ContinuumMechanics
    4.7.3SuperplasticityinBulkMetallicGlasses
    4.7.3.1CalculationofStrainRateforSuperplasticity
    4.7.4ConcordantDeformationMechanism
    4.7.4.1DensityVariationinAmorphousSolids
    4.7.4.2The'Inclusion'Problem
    4.7.4.3TheSystemwithoutTransformation
    4.7.4.4TheSystemwithTransformation
    4.7.4.5Conclusions
    4.8Viscoelasticity
    4.8.1Phenomenology
    4.8.2Time-andTemperature-DependentBehaviour
    4.8.2.1DefinitionsofViscosity
    4.8.2.2OrderofMagnitudeCalculations
    4.8.3TemperatureEffectonViscoelasticBehaviour
    4.8.3.1ArrheniusBehaviour
    4.8.3.2Vogel-Fulcher-TammannBehaviour
    References
    Index
    ColorPlots
查看详情
相关图书 / 更多
非晶态固体:结构和特性(英文版)
非晶合金塑性研究中的数学方法
任景莉、陈存 著
非晶态固体:结构和特性(英文版)
非晶合金变压器振动机理与噪声抑制
刘道生 著
非晶态固体:结构和特性(英文版)
非晶Ge基磁性半导体的磁性和电输运研究
裴娟 著
非晶态固体:结构和特性(英文版)
非晶合金及其复合材料的冲击响应
薛云飞、王鲁、才鸿年 著
非晶态固体:结构和特性(英文版)
非晶晶化粉末冶金钛合金
杨超、李元元 著
非晶态固体:结构和特性(英文版)
非晶复合涂层大功率激光制备技术
李瑞峰、李铸国 著
非晶态固体:结构和特性(英文版)
非晶物质:常规物质第四态 第三卷
汪卫华
非晶态固体:结构和特性(英文版)
非晶态光电功能材料
祁学孟、祁堃 著
非晶态固体:结构和特性(英文版)
非晶物质:常规物质第四态 第二卷
汪卫华
非晶态固体:结构和特性(英文版)
非晶纳米晶涂层制备与腐蚀
孙丽丽 著;王勇
非晶态固体:结构和特性(英文版)
非晶态合金及表面润湿性
马国峰 著
非晶态固体:结构和特性(英文版)
非晶物质:常规物质的第四态 第一卷
汪卫华
您可能感兴趣 / 更多
非晶态固体:结构和特性(英文版)
走出母职困境:一部帮助职场妈妈消除倦怠的科学指南
[澳]阿里·杨(Ali;Young
非晶态固体:结构和特性(英文版)
交锋二十年 (日本奇迹系列,美国与日本贸易摩擦)
[澳]约翰·昆克尔
非晶态固体:结构和特性(英文版)
勇敢的克兰西(接纳并善待与众不同的自己,敢于打破惯例,尝试更多可能)
[澳]拉切·休谟 著;赵静 译
非晶态固体:结构和特性(英文版)
极地竞赛:19世纪南极开发史(精装典藏版)
[澳]吉伦·达西·伍德,(Gillen,D’Arcy,Wood)
非晶态固体:结构和特性(英文版)
作家的房间:关于写作的对话(夏洛特?伍德“三年大师写作班”,集结11位澳大利亚本土作家访谈录,澳大利亚版巴黎评论)
[澳]夏洛特·伍德
非晶态固体:结构和特性(英文版)
夜空冲浪指南
[澳]丽莎·哈维·史密斯、[澳]索菲·比尔绘 著;孙正凡 张琳 译;未读 出品
非晶态固体:结构和特性(英文版)
南方理论:社会科学知识的全球动态
[澳]瑞文·康奈尔
非晶态固体:结构和特性(英文版)
策展指南
[澳]布拉德·巴克利,约翰·科诺莫斯
非晶态固体:结构和特性(英文版)
英语合作学习活动
[澳]杨宏智 (澳)沈惠忠
非晶态固体:结构和特性(英文版)
翻转恐惧大作战
[澳]安迪·哈迪曼 / 著
非晶态固体:结构和特性(英文版)
培养孩子抗挫力的50个游戏
[澳]戴西·特恩布尔
非晶态固体:结构和特性(英文版)
四大会计师事务所:历史秘辛与未来挑战
[澳]伊恩·d.高(ian d. gow) [澳]斯图尔特·凯尔斯(stuart kells)