液体火箭发动机燃烧过程建模与数值仿真(英文版)

液体火箭发动机燃烧过程建模与数值仿真(英文版)
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者:
2016-07
版次: 1
ISBN: 9787118110197
定价: 398.00
装帧: 精装
开本: 16开
纸张: 胶版纸
页数: 382页
正文语种: 英语
分类: 工程技术
  •   《液体火箭发动机燃烧过程建模与数值仿真(英文版)》是对作者王振国长期从事液体火箭发动机燃烧过程数值研究工作的总结,并反映了国内外当今研究发展的状况。全书共分为8章:第1章介绍了液体火箭发动机的基本结构与工作过程,概述液体火箭发动机燃烧过程数值仿真的特点及其发展历程;第2章~第7章为液体火箭发动机燃烧过程数学模型的理论研究,包括喷雾理论和喷嘴雾化模型、液滴蒸发燃烧模型、湍流流动模型、湍流燃烧模型、传热模型、燃烧不稳定模型;第8章为液体火箭发动机燃烧过程数值仿真应用研究,列出了完整的液体火箭发动机喷雾燃烧计算模型,介绍了方程及模型的数值求解方法以及网格生成方法,具体应用实例包括液体火箭发动机推力室燃烧、流动、传热以及燃烧不稳定数值分析。 Preface

    1 Introduction
    1.1 Basic Configuration of Liquid Rocket Engines
    1.1.1 Propellant Feed System
    1.1.2 Thrust Chamber
    1.2 Internal Combustion Processes of Liquid Rocket Engines
    1.2.1 Start and Shutdown
    1.2.2 Combustion Process
    1.2.3 Performance Parameters in Working Process
    1.3 Characteristics and Development History of Numerical Simulation of the
    Combustion Process in Liquid Rocket Engines
    1.3.1 Benefits of Numerical Simulation of the Combustion Process in
    Liquid Rocket Engines
    1.3.2 Main Contents of Numerical Simulations of Liquid Rocket Engine
    Operating Process
    1.3.3 Development of Numerical Simulations of Combustion Process
    in Liquid Rocket Engines
    1.4 Governing Equations of Chemical Fluid Dynamics
    1.5 Outline of this Book
    References

    2 Physical Mechanism and Numerical Modeling of Liquid Propellant Atomization
    2.1 Types and Functions of Injectors in a Liquid Rocket Engine
    2.2 Atomization Mechanism of Liquid Propellant
    2.2.1 Formation of Static Liquid Droplet
    2.2.2 Breakup of Cylindrical Liquid Jet
    2.2.3 Liquid Sheet Breakup
    2.2.4 Droplet Secondary Breakup
    2.3 Characteristics of Atomization in Liquid Rocket Engines
    2.3.1 Distribution Function of the Droplet Size
    2.3.2 Mean Diameter and Characteristic Diameter
    2.3.3 Measurement of Spray Size Distribution
    2.4 Atomization Modeling for Liquid Rocket Engine Atomizers
    2.4.1 Straight-flow Injector
    2.4.2 Centrifugal Injector
    2.4.3 Impinging-stream Injectors
    2.4.4 Coaxial Shear Injector
    2.4.5 Coaxial Centrifugal Injectors
    2.5 Numerical Simulation of Liquid Propellant Atomization
    2.5.1 Theoretical Models of Liquid Propellant Atomization
    2.5.2 Quasi-fluid Models
    2.5.3 Particle Trajectory Models
    2.5.4 Simulation of Liquid Jet Atomization Using Interface Tracking Method
    2.5.5 Liquid Jet Structure - Varying Flow Conditions
    References

    3 Modeling of Droplet Evaporation and Combustion
    3.1 Theory for Quasi-Steady Evaporation and Combustion of a Single Droplet at
    Atmospheric Pressure
    3.1.1 Quasi-Steady Evaporation Theory for Single Droplet in the Static
    Gas without Combustion
    3.1.2 Quasi-Steady Evaporation Theory for Droplet in a Static Gas with
    Combustion
    3.1.3 Non-Combustion Evaporation Theory for a Droplet in a
    Convective Flow
    3.1.4 Evaporation Theory for a Droplet in a Convective Medium with
    Combustion
    3.2 Evaporation Model for a Single Droplet under High Pressure
    3.2.1 ZKS Droplet High Pressure Evaporation Theory
    3.2.2 Application of the Liquid Activity Coefficient to Calculate the
    Gas-Liquid Equilibrium at a High Pressure
    3.3 Subcritical Evaporation Response Characteristics of Propellant Droplet in
    Oscillatory Environments
    3.3.1 Physical Model
    3.3.2 Examples and the Analysis of Results
    3.4 Multicomponent Fuel Droplet Evaporation Model
    3.4.1 Simple Multicomponent Droplet Evaporation Model
    3.4.2 Continuous Thermodynamics Model of Complex Multicomponent
    Mixture Droplet Evaporation
    3.5 Droplet Group Evaporation
    3.5.1 Definition of Group Combustion Number
    3.5.2 Droplet Group Combustion Model
    References

    4 Modeling of Turbulence
    4.1 Turbulence Modeling in RANS
    4.1.1 Algebraic Model
    4.1.2 One-Equation Model
    4.1.3 Two-Equation Models
    4.1.4 Turbulence Model Modification
    4.1.5 Nonlinear Eddy Viscosity Model
    4.1.6 Reynolds-Stress Model
    4.1.7 Comments on the Models
    4.2 Theories and Equations of Large Eddy Simulation
    4.2.1 Philosophy behind LES
    4.2.2 LES Governing Equations
    4.2.3 Subgrid-Scale Model
    4.2.4 Hybrid RANS/LES Methods
    4.3 Two-Phase Turbulence Model
    4.3.1 Hinze-Tchen Algebraic Model for Particle Turbulence
    4.3.2 Two-Phase Turbulence Model k-e-kp and k-e-Ap
    References

    5 Turbulent Combustion Model
    5.1 Average of Chemical Reaction Term
    5.2 Presumed PDF——Fast Chemistry Model for Diffusion Flame
    5.2.1 Concepts and Assumptions
    5.2.2 x-e-Z-g Equations
    5.2.3 Probability Density Distribution Function
    5.2.4 Presumed PDF
    5.2.5 Truncated Gaussian PDF
    5.3 Finite Rate EBU——Arrhenius Model for Premixed Flames
    5.4 Moment-Equation Model
    5.4.1 Time-Averaged Chemical Reaction Rate
    5.4.2 Closure for the Moments
    5.5 Flamelet Model for Turbulent Combustion
    5.5.1 Diffusion Flamelet Model
    5.5.2 Premixed Flamelet Model
    5.6 Transported PDF Method for Turbulent Combustion
    5.6.1 Transport Equations of the Probability Density Function
    5.6.2 The Closure Problem of Turbulence PDF Equation
    5.6.3 Transport Equation for the Single-Point Joint PDF with
    Density-Weighted Average
    5.6.4 Solution Algorithm for the Transport Equation of Probability
    Density Function
    5.7 Large Eddy Simulation of Turbulent Combustion
    5.7.1 Governing Equations of Large Eddy Simulation for
    Turbulent Combustion
    5.7.2 Sub-Grid Scale Combustion Models
    References

    6 Heat Transfer Modeling and Simulation
    6.1 Convective Heat Transfer Model of Combustor Wall
    6.1.1 Model of Gas Convection Heat
    6.1.2 Convection Cooling Model
    6.2 Heat Conduction Model of Combustor Wall
    6.2.1 Fourier Heat Conduction Law
    6.2.2 1D Steady Heat Conduction
    6.2.3 2D Steady Heat Conduction
    6.2.4 Unsteady Heat Conduction
    6.3 Radiation Heat Transfer Model
    6.3.1 Basic Law of Radiation
    6.3.2 Empirical Model of Radiation Heat Flux Density Calculation
    6.3.3 Numerical Simulation of Combustion Heat Radiation
    References

    7 The Model of Combustion Instability
    7.1 Overview
    7.1.1 Behavior of Combustion Instability
    7.1.2 Classification of Combustion Instability
    7.1.3 Characteristics of Combustion Instability
    7.2 Acoustic Basis of Combustion Instability
    7.2.1 Rayleigh Criterion for Acoustic Oscillations Arising from
    Heat or Mass Supply
    7.2.2 Acoustic and Acoustic Oscillations
    7.2.3 Acoustic Modes in the Combustion Chamber
    7.2.4 Self-Excited Oscillations in Rocket Engines
    7.3 Response Characteristics of Combustion Process in Liquid Rocket Engines
    7.3.1 Response Characteristics of the Propellant Supply System
    7.3.2 Response Characteristics of Spray Atomization Process
    7.3.3 Response Characteristics of Droplet Evaporation Process
    7.4 Sensitive Time Delay Model n-z
    7.4.1 Combustion Time Delay
    7.4.2 Sensitive Time Delay Model
    7.5 Nonlinear Theory for Combustion Stability in Liquid Rocket Engines
    7.5.1 Nonlinear Field Oscillator Model
    7.5.2 Continuous Stirred Tank Reactor Acoustic Model
    7.5.3 Spatio-Temporal Interaction Dynamic Model
    7.5.4 General Thermodynamic Analysis of Combustion Instability
    7.6 Control of Unstable Combustion
    7.6.1 Passive Control
    7.6.2 Active Control
    7.6.3 A Third Control Method
    References

    8 Numerical Method and Simulations of Liquid Rocket Engine
    Combustion Process
    8.1 Governing Equations of Two-Phase Multicomponent Reaction Flows
    8.1.1 Gas Phase Governing Equation
    8.1.2 Liquid Particle Trajectory Model
    8.1.3 Turbulence Model
    8.1.4 Droplets Atomizing Model
    8.1.5 Droplet Evaporation Model
    8.1.6 Chemical Reaction Kinetics Model
    8.2 Numerical Methodology
    8.2.1 Overview
    8.2.2 The Commonly-Used Discretization Scheme
    8.2.3 Discrete Equations
    8.2.4 Discretization of the Momentum Equation Based on the
    Staggered Grid
    8.2.5 The SIMPLE Algorithm of Flow Field Computing
    8.2.6 PISO Algorithm
    8.3 Grid Generation Techniques
    8.3.1 Structured Grid Generation Technology
    8.3.2 Unstructured Mesh Generation Techniques
    8.4 Simulations of Combustion in Liquid Rocket Engines and Results Analysis
    8.4.1 Numerical Analysis of Dual-States Hydrogen Engine Combustion
    and Heat Transfer Processes
    8.4.2 Numerical Heat Transfer Simulation of a Three-Component
    Thrust Chamber
    8.4.3 Numerical Simulation of Liquid Rocket Engine Combustion
    Stability

    References
    Index
  • 内容简介:
      《液体火箭发动机燃烧过程建模与数值仿真(英文版)》是对作者王振国长期从事液体火箭发动机燃烧过程数值研究工作的总结,并反映了国内外当今研究发展的状况。全书共分为8章:第1章介绍了液体火箭发动机的基本结构与工作过程,概述液体火箭发动机燃烧过程数值仿真的特点及其发展历程;第2章~第7章为液体火箭发动机燃烧过程数学模型的理论研究,包括喷雾理论和喷嘴雾化模型、液滴蒸发燃烧模型、湍流流动模型、湍流燃烧模型、传热模型、燃烧不稳定模型;第8章为液体火箭发动机燃烧过程数值仿真应用研究,列出了完整的液体火箭发动机喷雾燃烧计算模型,介绍了方程及模型的数值求解方法以及网格生成方法,具体应用实例包括液体火箭发动机推力室燃烧、流动、传热以及燃烧不稳定数值分析。
  • 目录:
    Preface

    1 Introduction
    1.1 Basic Configuration of Liquid Rocket Engines
    1.1.1 Propellant Feed System
    1.1.2 Thrust Chamber
    1.2 Internal Combustion Processes of Liquid Rocket Engines
    1.2.1 Start and Shutdown
    1.2.2 Combustion Process
    1.2.3 Performance Parameters in Working Process
    1.3 Characteristics and Development History of Numerical Simulation of the
    Combustion Process in Liquid Rocket Engines
    1.3.1 Benefits of Numerical Simulation of the Combustion Process in
    Liquid Rocket Engines
    1.3.2 Main Contents of Numerical Simulations of Liquid Rocket Engine
    Operating Process
    1.3.3 Development of Numerical Simulations of Combustion Process
    in Liquid Rocket Engines
    1.4 Governing Equations of Chemical Fluid Dynamics
    1.5 Outline of this Book
    References

    2 Physical Mechanism and Numerical Modeling of Liquid Propellant Atomization
    2.1 Types and Functions of Injectors in a Liquid Rocket Engine
    2.2 Atomization Mechanism of Liquid Propellant
    2.2.1 Formation of Static Liquid Droplet
    2.2.2 Breakup of Cylindrical Liquid Jet
    2.2.3 Liquid Sheet Breakup
    2.2.4 Droplet Secondary Breakup
    2.3 Characteristics of Atomization in Liquid Rocket Engines
    2.3.1 Distribution Function of the Droplet Size
    2.3.2 Mean Diameter and Characteristic Diameter
    2.3.3 Measurement of Spray Size Distribution
    2.4 Atomization Modeling for Liquid Rocket Engine Atomizers
    2.4.1 Straight-flow Injector
    2.4.2 Centrifugal Injector
    2.4.3 Impinging-stream Injectors
    2.4.4 Coaxial Shear Injector
    2.4.5 Coaxial Centrifugal Injectors
    2.5 Numerical Simulation of Liquid Propellant Atomization
    2.5.1 Theoretical Models of Liquid Propellant Atomization
    2.5.2 Quasi-fluid Models
    2.5.3 Particle Trajectory Models
    2.5.4 Simulation of Liquid Jet Atomization Using Interface Tracking Method
    2.5.5 Liquid Jet Structure - Varying Flow Conditions
    References

    3 Modeling of Droplet Evaporation and Combustion
    3.1 Theory for Quasi-Steady Evaporation and Combustion of a Single Droplet at
    Atmospheric Pressure
    3.1.1 Quasi-Steady Evaporation Theory for Single Droplet in the Static
    Gas without Combustion
    3.1.2 Quasi-Steady Evaporation Theory for Droplet in a Static Gas with
    Combustion
    3.1.3 Non-Combustion Evaporation Theory for a Droplet in a
    Convective Flow
    3.1.4 Evaporation Theory for a Droplet in a Convective Medium with
    Combustion
    3.2 Evaporation Model for a Single Droplet under High Pressure
    3.2.1 ZKS Droplet High Pressure Evaporation Theory
    3.2.2 Application of the Liquid Activity Coefficient to Calculate the
    Gas-Liquid Equilibrium at a High Pressure
    3.3 Subcritical Evaporation Response Characteristics of Propellant Droplet in
    Oscillatory Environments
    3.3.1 Physical Model
    3.3.2 Examples and the Analysis of Results
    3.4 Multicomponent Fuel Droplet Evaporation Model
    3.4.1 Simple Multicomponent Droplet Evaporation Model
    3.4.2 Continuous Thermodynamics Model of Complex Multicomponent
    Mixture Droplet Evaporation
    3.5 Droplet Group Evaporation
    3.5.1 Definition of Group Combustion Number
    3.5.2 Droplet Group Combustion Model
    References

    4 Modeling of Turbulence
    4.1 Turbulence Modeling in RANS
    4.1.1 Algebraic Model
    4.1.2 One-Equation Model
    4.1.3 Two-Equation Models
    4.1.4 Turbulence Model Modification
    4.1.5 Nonlinear Eddy Viscosity Model
    4.1.6 Reynolds-Stress Model
    4.1.7 Comments on the Models
    4.2 Theories and Equations of Large Eddy Simulation
    4.2.1 Philosophy behind LES
    4.2.2 LES Governing Equations
    4.2.3 Subgrid-Scale Model
    4.2.4 Hybrid RANS/LES Methods
    4.3 Two-Phase Turbulence Model
    4.3.1 Hinze-Tchen Algebraic Model for Particle Turbulence
    4.3.2 Two-Phase Turbulence Model k-e-kp and k-e-Ap
    References

    5 Turbulent Combustion Model
    5.1 Average of Chemical Reaction Term
    5.2 Presumed PDF——Fast Chemistry Model for Diffusion Flame
    5.2.1 Concepts and Assumptions
    5.2.2 x-e-Z-g Equations
    5.2.3 Probability Density Distribution Function
    5.2.4 Presumed PDF
    5.2.5 Truncated Gaussian PDF
    5.3 Finite Rate EBU——Arrhenius Model for Premixed Flames
    5.4 Moment-Equation Model
    5.4.1 Time-Averaged Chemical Reaction Rate
    5.4.2 Closure for the Moments
    5.5 Flamelet Model for Turbulent Combustion
    5.5.1 Diffusion Flamelet Model
    5.5.2 Premixed Flamelet Model
    5.6 Transported PDF Method for Turbulent Combustion
    5.6.1 Transport Equations of the Probability Density Function
    5.6.2 The Closure Problem of Turbulence PDF Equation
    5.6.3 Transport Equation for the Single-Point Joint PDF with
    Density-Weighted Average
    5.6.4 Solution Algorithm for the Transport Equation of Probability
    Density Function
    5.7 Large Eddy Simulation of Turbulent Combustion
    5.7.1 Governing Equations of Large Eddy Simulation for
    Turbulent Combustion
    5.7.2 Sub-Grid Scale Combustion Models
    References

    6 Heat Transfer Modeling and Simulation
    6.1 Convective Heat Transfer Model of Combustor Wall
    6.1.1 Model of Gas Convection Heat
    6.1.2 Convection Cooling Model
    6.2 Heat Conduction Model of Combustor Wall
    6.2.1 Fourier Heat Conduction Law
    6.2.2 1D Steady Heat Conduction
    6.2.3 2D Steady Heat Conduction
    6.2.4 Unsteady Heat Conduction
    6.3 Radiation Heat Transfer Model
    6.3.1 Basic Law of Radiation
    6.3.2 Empirical Model of Radiation Heat Flux Density Calculation
    6.3.3 Numerical Simulation of Combustion Heat Radiation
    References

    7 The Model of Combustion Instability
    7.1 Overview
    7.1.1 Behavior of Combustion Instability
    7.1.2 Classification of Combustion Instability
    7.1.3 Characteristics of Combustion Instability
    7.2 Acoustic Basis of Combustion Instability
    7.2.1 Rayleigh Criterion for Acoustic Oscillations Arising from
    Heat or Mass Supply
    7.2.2 Acoustic and Acoustic Oscillations
    7.2.3 Acoustic Modes in the Combustion Chamber
    7.2.4 Self-Excited Oscillations in Rocket Engines
    7.3 Response Characteristics of Combustion Process in Liquid Rocket Engines
    7.3.1 Response Characteristics of the Propellant Supply System
    7.3.2 Response Characteristics of Spray Atomization Process
    7.3.3 Response Characteristics of Droplet Evaporation Process
    7.4 Sensitive Time Delay Model n-z
    7.4.1 Combustion Time Delay
    7.4.2 Sensitive Time Delay Model
    7.5 Nonlinear Theory for Combustion Stability in Liquid Rocket Engines
    7.5.1 Nonlinear Field Oscillator Model
    7.5.2 Continuous Stirred Tank Reactor Acoustic Model
    7.5.3 Spatio-Temporal Interaction Dynamic Model
    7.5.4 General Thermodynamic Analysis of Combustion Instability
    7.6 Control of Unstable Combustion
    7.6.1 Passive Control
    7.6.2 Active Control
    7.6.3 A Third Control Method
    References

    8 Numerical Method and Simulations of Liquid Rocket Engine
    Combustion Process
    8.1 Governing Equations of Two-Phase Multicomponent Reaction Flows
    8.1.1 Gas Phase Governing Equation
    8.1.2 Liquid Particle Trajectory Model
    8.1.3 Turbulence Model
    8.1.4 Droplets Atomizing Model
    8.1.5 Droplet Evaporation Model
    8.1.6 Chemical Reaction Kinetics Model
    8.2 Numerical Methodology
    8.2.1 Overview
    8.2.2 The Commonly-Used Discretization Scheme
    8.2.3 Discrete Equations
    8.2.4 Discretization of the Momentum Equation Based on the
    Staggered Grid
    8.2.5 The SIMPLE Algorithm of Flow Field Computing
    8.2.6 PISO Algorithm
    8.3 Grid Generation Techniques
    8.3.1 Structured Grid Generation Technology
    8.3.2 Unstructured Mesh Generation Techniques
    8.4 Simulations of Combustion in Liquid Rocket Engines and Results Analysis
    8.4.1 Numerical Analysis of Dual-States Hydrogen Engine Combustion
    and Heat Transfer Processes
    8.4.2 Numerical Heat Transfer Simulation of a Three-Component
    Thrust Chamber
    8.4.3 Numerical Simulation of Liquid Rocket Engine Combustion
    Stability

    References
    Index
查看详情
相关图书 / 更多
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体火箭发动机高空模拟试验系统设计
史超 编著
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体介质节能窗技术与应用(英文版)
吕原丽 著
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体推进剂污染治理及泄漏防控技术
侯瑞琴 主编
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体静压润滑有限元计算方法及分析
黄禹;荣佑民;曹海印
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体射流稳定性
杨立军;富庆飞
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体火箭发动机制造工艺技术
同立军 编
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体光子器件
王琼华
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体火箭发动机优化设计
郑赟韬 著;蔡国飙;方杰;童晓艳
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体燃料——费托催化剂的制备原理(张玉兰)
张玉兰 编
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体火箭发动机健康监控
吴建军;程玉强;杨述明
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体的智慧 : 关于调制完美鸡尾酒的科学与艺术
戴夫·阿诺德(美)
液体火箭发动机燃烧过程建模与数值仿真(英文版)
液体运载火箭动力冗余技术工程设计与实践
陈士强 著;容易;牟宇
您可能感兴趣 / 更多
液体火箭发动机燃烧过程建模与数值仿真(英文版)
海上应急医学技术
王振国
液体火箭发动机燃烧过程建模与数值仿真(英文版)
中医文献学概论
王振国
液体火箭发动机燃烧过程建模与数值仿真(英文版)
中醫典籍與文化 2022年 第一輯 總第4期 出土醫學文獻與文物
王振国;张树剑;杜锋
液体火箭发动机燃烧过程建模与数值仿真(英文版)
微分方程及建模研究
王振国、王俊梅 著
液体火箭发动机燃烧过程建模与数值仿真(英文版)
中医典籍与文化(2021年第二辑 总第3期)
王振国;张树剑;姜姗
液体火箭发动机燃烧过程建模与数值仿真(英文版)
中医典籍与文化(2021年第一辑 总第2期)
王振国
液体火箭发动机燃烧过程建模与数值仿真(英文版)
中外医学史·全国中医药行业高等教育“十四五”规划教材
王振国;徐建云
液体火箭发动机燃烧过程建模与数值仿真(英文版)
中医典籍与文化 第一辑 多元医学交流与融通
王振国 ;张树剑 ;崔军锋
液体火箭发动机燃烧过程建模与数值仿真(英文版)
肿瘤防治全攻略
王振国、王磊、王硕 著
液体火箭发动机燃烧过程建模与数值仿真(英文版)
新英汉翻译教程学生用书
王振国、李艳琳 编著
液体火箭发动机燃烧过程建模与数值仿真(英文版)
新英汉翻译教程:教师用书
王振国、李艳琳 编著
液体火箭发动机燃烧过程建模与数值仿真(英文版)
可重复使用运载器研究进展
王振国、罗世彬、吴建军 著