什么是数学:对思想和方法的基本研究

什么是数学
9.1
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: [美]
出版社: 复旦大学出版社
2005-10
版次: 1
ISBN: 9787309044546
定价: 37.00
装帧: 平装
开本: 32开
纸张: 胶版纸
页数: 584页
字数: 503千字
原版书名: What is Mathematics
分类: 自然科学
  •   既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。本书是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I?斯图尔特增写了新的一章。此第二版以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
      本书是世界著名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读此书。特别对中学数学教师,大学生和高中生,都是一本极好的参考书。   R·柯朗(RichardCourant)是20世纪杰出的数学家,哥廷根学派重要成员。他生前是纽约大学数学系和数学科学研究院的主任,该研究院后被重命名为柯朗数学科学研究院。他写的书《数学物理方程》为每一个物理学家所熟知;而他的《微积分学》已被认为是近代写得最好的该学科的代表作。

      H·罗宾HerbertRobbins)是新泽西拉特杰斯大学的数理统计教授。

      I·斯图尔特(IanStewart)是沃里克大学的数学教授,并且是《自然界中的数和上帝玩色子游戏吗》一书的作者;他还在《科学美国人》杂志上主编《数学娱乐》专栏;他因使科学为大众理解的杰出贡献而在1995年获得了皇家协会的米凯勒法拉第奖章。 什么是数学
    第1章自然数
    引言
    §1整数的计算
    §2数系的无限性数学归纳法
    第1章补充数论
    引言
    §1素数
    §2同余
    §3毕达哥拉斯数和费马大定理
    §4欧几里得辗转相除法
    第2章数学中的数系
    引言
    §1有理数
    §2不可公度线段无理数和极限概念
    §3解析几何概述
    §4无限的数学分析
    §5复数
    §6代数数和超越数
    第2章补充集合代数
    第3章几何作图数域的代数
    引言
    第1部分不可能性的证明和代数
    §1基本几何作图
    §2可作图的数和数域
    §3三个不可解的希腊问题
    第2部分作图的各种方法
    §4几何变换反演
    §5用其他工具作图只用圆规的马歇罗尼作图
    §6再谈反演及其应用
    第4章射影几何公理体系非欧几里得几何
    §1引言
    §2基本概念
    §3交比
    §4平行性和无穷远
    §5应用
    §6解析表示
    §7只用直尺的作图问题
    §8二次曲线和二次曲面
    §9公理体系和非欧几何
    附录高维空间中的几何学
    第5章拓扑学
    引言
    §1多面体的欧拉公式
    §2图形的拓扑性质
    §3拓扑定理的其他例子
    §4曲面的拓扑分类
    附录
    第6章函数和极限
    引言
    §1变量和函数
    §2极限
    §3连续趋近的极限
    §4连续性的精确定义
    §5有关连续函数的两个基本定理
    §6布尔查诺定理的一些应用
    第6章补充极限和连续的一些例题
    §1极限的例题
    §2连续性的例题
    第7章极大与极小
    引言
    §1初等几何中的问题
    §2基本极值问题的一般原则
    §3驻点与微分学
    §4施瓦茨的三角形问题
    §5施泰纳问题
    §6极值与不等式
    §7极值的存在性狄里赫莱原理
    §8等周问题
    §9带有边界条件的极值问题施泰纳问题和等周问题之间的联系
    §10变分法
    §11极小问题的实验解法肥皂膜实验
    第8章微积分
    引言
    §1积分
    §2导数
    §3微分法
    §4莱布尼茨的记号和“无穷小”
    §5微积分基本定理
    §6指数函数与对数函数
    §7微分方程
    第8章补充
    §1原理方面的内容
    §2数量级
    §3无穷级数和无穷乘积
    §4用统计方法得到素数定理
    第9章最新进展
    §1产生素数的公式
    §2哥德巴赫猜想和孪生素数
    §3费马大定理
    §4连续统假设
    §5集合论中的符号
    §6四色定理
    §7豪斯道夫维数和分形
    §8纽结
    §9力学中的一个问题
    §10施泰纳问题
    §11肥皂膜和最小曲面
    §12非标准分析
    附录补充说明问题和习题
    算术和代数
    解析几何
    几何作图
    射影几何和非欧几何
    拓扑学
    函数、极限和连续性
    极大与极小
    微积分
    积分法
    参考书目1
    推荐阅读(参考书目2)
  • 内容简介:
      既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。本书是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I?斯图尔特增写了新的一章。此第二版以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
      本书是世界著名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读此书。特别对中学数学教师,大学生和高中生,都是一本极好的参考书。
  • 作者简介:
      R·柯朗(RichardCourant)是20世纪杰出的数学家,哥廷根学派重要成员。他生前是纽约大学数学系和数学科学研究院的主任,该研究院后被重命名为柯朗数学科学研究院。他写的书《数学物理方程》为每一个物理学家所熟知;而他的《微积分学》已被认为是近代写得最好的该学科的代表作。

      H·罗宾HerbertRobbins)是新泽西拉特杰斯大学的数理统计教授。

      I·斯图尔特(IanStewart)是沃里克大学的数学教授,并且是《自然界中的数和上帝玩色子游戏吗》一书的作者;他还在《科学美国人》杂志上主编《数学娱乐》专栏;他因使科学为大众理解的杰出贡献而在1995年获得了皇家协会的米凯勒法拉第奖章。
  • 目录:
    什么是数学
    第1章自然数
    引言
    §1整数的计算
    §2数系的无限性数学归纳法
    第1章补充数论
    引言
    §1素数
    §2同余
    §3毕达哥拉斯数和费马大定理
    §4欧几里得辗转相除法
    第2章数学中的数系
    引言
    §1有理数
    §2不可公度线段无理数和极限概念
    §3解析几何概述
    §4无限的数学分析
    §5复数
    §6代数数和超越数
    第2章补充集合代数
    第3章几何作图数域的代数
    引言
    第1部分不可能性的证明和代数
    §1基本几何作图
    §2可作图的数和数域
    §3三个不可解的希腊问题
    第2部分作图的各种方法
    §4几何变换反演
    §5用其他工具作图只用圆规的马歇罗尼作图
    §6再谈反演及其应用
    第4章射影几何公理体系非欧几里得几何
    §1引言
    §2基本概念
    §3交比
    §4平行性和无穷远
    §5应用
    §6解析表示
    §7只用直尺的作图问题
    §8二次曲线和二次曲面
    §9公理体系和非欧几何
    附录高维空间中的几何学
    第5章拓扑学
    引言
    §1多面体的欧拉公式
    §2图形的拓扑性质
    §3拓扑定理的其他例子
    §4曲面的拓扑分类
    附录
    第6章函数和极限
    引言
    §1变量和函数
    §2极限
    §3连续趋近的极限
    §4连续性的精确定义
    §5有关连续函数的两个基本定理
    §6布尔查诺定理的一些应用
    第6章补充极限和连续的一些例题
    §1极限的例题
    §2连续性的例题
    第7章极大与极小
    引言
    §1初等几何中的问题
    §2基本极值问题的一般原则
    §3驻点与微分学
    §4施瓦茨的三角形问题
    §5施泰纳问题
    §6极值与不等式
    §7极值的存在性狄里赫莱原理
    §8等周问题
    §9带有边界条件的极值问题施泰纳问题和等周问题之间的联系
    §10变分法
    §11极小问题的实验解法肥皂膜实验
    第8章微积分
    引言
    §1积分
    §2导数
    §3微分法
    §4莱布尼茨的记号和“无穷小”
    §5微积分基本定理
    §6指数函数与对数函数
    §7微分方程
    第8章补充
    §1原理方面的内容
    §2数量级
    §3无穷级数和无穷乘积
    §4用统计方法得到素数定理
    第9章最新进展
    §1产生素数的公式
    §2哥德巴赫猜想和孪生素数
    §3费马大定理
    §4连续统假设
    §5集合论中的符号
    §6四色定理
    §7豪斯道夫维数和分形
    §8纽结
    §9力学中的一个问题
    §10施泰纳问题
    §11肥皂膜和最小曲面
    §12非标准分析
    附录补充说明问题和习题
    算术和代数
    解析几何
    几何作图
    射影几何和非欧几何
    拓扑学
    函数、极限和连续性
    极大与极小
    微积分
    积分法
    参考书目1
    推荐阅读(参考书目2)
查看详情
12
好书推荐 / 更多
什么是数学
20世纪思想史:从弗洛伊德到互联网
[英]彼得·沃森 著;杨阳 译;张凤
什么是数学
想象一朵未来的玫瑰
[葡]费尔南多·佩索阿 著;杨铁军 译
什么是数学
语言与死亡/当代激进思想家译丛
[意]吉奥乔·阿甘本 著
什么是数学
爸爸妈妈,请做我的摄影师:十万父母拍娃智慧分享儿童摄影
枫糖盒子 著
什么是数学
陈规再造:巫鸿美术史文集卷三
[美]巫鸿 著;郑岩 编
什么是数学
另一个世界:中国记忆1961-1962
[瑞典]林西莉 著;李之义 译
什么是数学
生活,在别处:海明威影像集
鲍里斯·维多夫斯基 著;吴天楚 译;[美国]玛瑞儿·海明威;高方;王天宇
什么是数学
大西洋的故事
[英]西蒙·温彻斯特(Simon Winchester) 著
什么是数学
图说勃鲁盖尔
[日]冈部纮三 著;曹逸冰 译
什么是数学
巴别塔(我要世界都听见我的声音,我曾被压抑,但绝不沉默。)(读客外国小说文库)
[英]A.S.拜厄特 著;王一鸣 译
什么是数学
四十二年,我的"恶邻"李敖大师
林恒范 著;[中国台湾]林丽蘋 口述
什么是数学
灭绝与演化:化石中的生命全史
[美]尼尔斯·艾崔奇 著;周亚纯 译;董丽萍