可压缩流的大涡模拟方法

可压缩流的大涡模拟方法
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: (E.Garnier)
2013-05
版次: 1
ISBN: 9787510058202
定价: 49.00
装帧: 平装
开本: 16开
纸张: 胶版纸
页数: 276页
正文语种: 英语
分类: 自然科学
17人买过
  •   可压缩流的les是一个函待开发的领域,《可压缩流的大涡模拟方法》旨在讲述les基础及其在实践中的应用。为了最大程度地缩小理论框架之间的衔接,缓解les研究和日益增长的工程模型应用中的需求之间的矛盾,《可压缩流的大涡模拟方法》最大程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了les理论及其应用。 1introduction
    2lesgoverningequations
    2.1preliminarydiscussion
    2.2governingequations
    2.2.1fundamentalassumptions
    2.2.2conservativeformulation
    2.2.3alternativeformulations
    2.3filteringoperator
    2.3.1definition
    2.3.2discreterepresentationoffilters
    2.3.3filteringofdiscontinuities
    2.3.4filterassociatedtothenumericalmethod
    2.3.5commutationerror
    2.3.6favrefiltering
    2.3.7summaryofthedifferenttypeoffilters
    2.4formulationofthefilteredgoverningequations.
    2.4.1enthalpyformulation
    2.4.2temperatureformulation
    2.4.3pressureformulation
    2.4.4entropyformulation
    2.4.5filteredtotalenergyequations
    2.4.6momentumequations
    2.4.7simplifyingassumptions
    2.5additionalrelationsforlesofcompressibleflows
    2.5.1preservationoforiginalsymmetries
    2.5.2discontinuityjumprelationsforles
    2.5.3secondlawofthermodynamics
    2.6modelconstruction
    2.6.1basichypothesis
    2.6.2modelingstrategies

    3compressibleturbulencedynamics
    3.1scopeandcontentofthischapter
    3.2kovasznaydecompositionofturbulentfluctuations
    3.2.1kovasznay'slineardecomposition
    3.2.2weaklynonlinearkovasznaydecomposition
    3.3statisticaldescriptionofcompressibleturbulence
    3.4shock-turbulenceinteraction
    3.4.1introductiontothelinearinteractionapproximationtheory
    3.4.2vorticalturbulence-shockinteraction
    3.4.3mixed-modeturbulence-shockinteraction
    3.4.4consequencesforsubgridmodeling
    3.5differentregimesofisotropiccompressibleturbulence
    3.5.1quasi-isentropic-turbulenceregime
    3.5.2nonlinearsubsonicregime
    3.5.3supersonicregime
    3.5.4consequencesforsubgridmodeling

    4functionalmodeling
    4.1basisoffunctionalmodeling
    4.1.1phenomenologyofscaleinteractions
    4.1.2basicfunctionalmodelinghypothesis
    4.2sgsviscosity
    4.2.1theboussinesqhypothesis
    4.2.2smagorinskymodel
    4.2.3structurefunctionmodel
    4.2.4mixedscalemodel
    4.3isotropictensormodeling
    4.4sgsheatflux
    4.5modelingofthesubgridturbulentdissipationrate
    4.6improvementofsgsmodels
    4.6.1structuralsensorsandselectivemodels
    4.6.2accentuationtechniqueandfilteredmodels
    4.6.3high-passfilterededdyviscosity
    4.6.4wall-adaptinglocaleddy-viscositymodel
    4.6.5dynamicprocedure
    4.6.6implicitdiffusionandtheimplicitlesconcept

    5explicitstructuralmodeling
    5.1motivationofstructuralmodeling
    5.2modelsbasedondeconvolution
    5.2.1scale-similaritymodel
    5.2.2approximatedeconvolutionmodel
    5.2.3tensor-diffusivitymodel
    5.3regularizationtechniques;.
    5.3.1eddy-viscosityregularization
    5.3.2relaxationregularization
    5.3.3regularizationbyexplicitfiltering
    5.4multi-scalemodelingofsubgrid-scales
    5.4.1multi-levelapproaches
    5.4.2stretched-vortexmodel
    5.4.3variationalmulti-scalemodel

    6relationbetweensgsmodelandnumericaldiscretization
    6.1systematicproceduresfornonlinearerroranalysis
    6.1.1errorsources
    6.1.2modifieddifferentialequationanalysis
    6.1.3modifieddifferentialequationanalysisinspectralspace
    6.2implicitlesapproachesbasedonlinearandnonlineardiscretizationschemes
    6.2.1thevolumebalanceprocedureofschumamm
    6.2.2thekawamura-kuwaharascheme
    6.2.3thepiecewise-parabolicmethod
    6.2.4theflux-corrected-transportmethod
    6.2.5thempdatamethod
    6.2.6theoptimumfinite-volumescheme
    6.3implicitlesbyadaptivelocaldeconvolution
    6.3.1fundamentalconceptofaldm
    6.3.2aldmfortheincompressiblenavier-stokesequations.
    6.3.3aldmforthecompressiblenavier-stokesequations

    7boundaryconditionsforlarge-eddysimulationofcompressibleflows
    7.1introduction
    7.2wallmodelingforcompressibleles
    7.2.1statementoftheproblem
    7.2.2wallboundaryconditionsinthekovasznaydecompositionframework:aninsight
    7.2.3turbulentboundarylayer:vorticityandtemperaturefields
    7.2.4turbulentboundarylayer:acousticfield
    7.2.5consequencesforthedevelopmentofcompressiblewallmodels
    7.2.6extensionofexistingwallmodelsforincompressibleflows
    7.3unsteadyturbulentinflowconditionsforcompressibleles
    7.3.1fundamentals
    7.3.2precursorsimulation:advantagesanddrawbacks
    7.3.3extraction-rescalingtechniques
    7.3.4synthetic-turbulence-basedmodels

    8subsonicapplicationswithcompressibilityeffects
    8.1homogeneousturbulence
    8.1.1context
    8.1.2afewrealizations
    8.1.3influenceofthenumericalmethod
    8.1.4sgsmodeling
    8.2channelflow
    8.2.1context
    8.2.2afewrealizations
    8.2.3influenceofthenumericalmethod
    8.2.4influenceofthesgsmodel
    8.3mixinglayer
    8.3.1context
    8.3.2afewrealizations
    8.3.3influenceofthenumericalmethod
    8.3.4influenceofthesgsmodel
    8.4boundary-layerflow
    8.4.1context
    8.4.2afewrealizations
    8.5jets
    8.5.1context
    8.5.2afewrealizations
    8.5.3influenceofthenumericalmethod
    8.5.4influenceofthesgsmodel
    8.5.5physicalanalysis
    8.6flowsovercavities
    8.6:1context
    8.6.2afewrealizations
    8.6.3influenceofthenumericalmethod
    8.6.4influenceofthesgsmodel
    8.6.5physicalanalysis

    9supersonicapplications
    9.1homogeneousturbulence
    9.2channelflow
    9.2.1context
    9.2.2afewrealizations
    9.2.3influenceofthenumericalmethod
    9.2.4influenceofthegridresolution
    9.2.5influenceofthesgsmodel
    9.3boundarylayers
    9.3.1context
    9.3.2afewrealizations
    9.3.3influenceofthenumericalmethod
    9.3.4influenceofthegridresolution
    9.3.5sgsmodeling
    9.4jets
    9.4.1context
    9.4.2afewrealizations
    9.4.3influenceofthenumericalmethod
    9.4.4influenceofthesgsmodel
    9.4.5physicalanalysis

    10supersonicapplicationswithshock-turbulenceinteraction
    10.1shock-interactionwithhomogeneousturbulence
    10.1.1phenomenologyofshock-interactionwithhomogeneousturbulence
    10.1.2lesofshock-interactionwithhomogeneousturbulence
    10.2shock-turbulenceinteractioninjets
    10.2.1phenomenologyofshock-turbulenceinteractioninjets
    10.2.2lesofshock-turbulenceinteractioninjets
    10.3shock-turbulent-boundary-layerinteraction
    10.3.1phenomenologyofshock-turbulent-boundary-layerinteraction
    10.3.2lesofcompression-rampconfigurations
    references
    index
  • 内容简介:
      可压缩流的les是一个函待开发的领域,《可压缩流的大涡模拟方法》旨在讲述les基础及其在实践中的应用。为了最大程度地缩小理论框架之间的衔接,缓解les研究和日益增长的工程模型应用中的需求之间的矛盾,《可压缩流的大涡模拟方法》最大程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了les理论及其应用。
  • 目录:
    1introduction
    2lesgoverningequations
    2.1preliminarydiscussion
    2.2governingequations
    2.2.1fundamentalassumptions
    2.2.2conservativeformulation
    2.2.3alternativeformulations
    2.3filteringoperator
    2.3.1definition
    2.3.2discreterepresentationoffilters
    2.3.3filteringofdiscontinuities
    2.3.4filterassociatedtothenumericalmethod
    2.3.5commutationerror
    2.3.6favrefiltering
    2.3.7summaryofthedifferenttypeoffilters
    2.4formulationofthefilteredgoverningequations.
    2.4.1enthalpyformulation
    2.4.2temperatureformulation
    2.4.3pressureformulation
    2.4.4entropyformulation
    2.4.5filteredtotalenergyequations
    2.4.6momentumequations
    2.4.7simplifyingassumptions
    2.5additionalrelationsforlesofcompressibleflows
    2.5.1preservationoforiginalsymmetries
    2.5.2discontinuityjumprelationsforles
    2.5.3secondlawofthermodynamics
    2.6modelconstruction
    2.6.1basichypothesis
    2.6.2modelingstrategies

    3compressibleturbulencedynamics
    3.1scopeandcontentofthischapter
    3.2kovasznaydecompositionofturbulentfluctuations
    3.2.1kovasznay'slineardecomposition
    3.2.2weaklynonlinearkovasznaydecomposition
    3.3statisticaldescriptionofcompressibleturbulence
    3.4shock-turbulenceinteraction
    3.4.1introductiontothelinearinteractionapproximationtheory
    3.4.2vorticalturbulence-shockinteraction
    3.4.3mixed-modeturbulence-shockinteraction
    3.4.4consequencesforsubgridmodeling
    3.5differentregimesofisotropiccompressibleturbulence
    3.5.1quasi-isentropic-turbulenceregime
    3.5.2nonlinearsubsonicregime
    3.5.3supersonicregime
    3.5.4consequencesforsubgridmodeling

    4functionalmodeling
    4.1basisoffunctionalmodeling
    4.1.1phenomenologyofscaleinteractions
    4.1.2basicfunctionalmodelinghypothesis
    4.2sgsviscosity
    4.2.1theboussinesqhypothesis
    4.2.2smagorinskymodel
    4.2.3structurefunctionmodel
    4.2.4mixedscalemodel
    4.3isotropictensormodeling
    4.4sgsheatflux
    4.5modelingofthesubgridturbulentdissipationrate
    4.6improvementofsgsmodels
    4.6.1structuralsensorsandselectivemodels
    4.6.2accentuationtechniqueandfilteredmodels
    4.6.3high-passfilterededdyviscosity
    4.6.4wall-adaptinglocaleddy-viscositymodel
    4.6.5dynamicprocedure
    4.6.6implicitdiffusionandtheimplicitlesconcept

    5explicitstructuralmodeling
    5.1motivationofstructuralmodeling
    5.2modelsbasedondeconvolution
    5.2.1scale-similaritymodel
    5.2.2approximatedeconvolutionmodel
    5.2.3tensor-diffusivitymodel
    5.3regularizationtechniques;.
    5.3.1eddy-viscosityregularization
    5.3.2relaxationregularization
    5.3.3regularizationbyexplicitfiltering
    5.4multi-scalemodelingofsubgrid-scales
    5.4.1multi-levelapproaches
    5.4.2stretched-vortexmodel
    5.4.3variationalmulti-scalemodel

    6relationbetweensgsmodelandnumericaldiscretization
    6.1systematicproceduresfornonlinearerroranalysis
    6.1.1errorsources
    6.1.2modifieddifferentialequationanalysis
    6.1.3modifieddifferentialequationanalysisinspectralspace
    6.2implicitlesapproachesbasedonlinearandnonlineardiscretizationschemes
    6.2.1thevolumebalanceprocedureofschumamm
    6.2.2thekawamura-kuwaharascheme
    6.2.3thepiecewise-parabolicmethod
    6.2.4theflux-corrected-transportmethod
    6.2.5thempdatamethod
    6.2.6theoptimumfinite-volumescheme
    6.3implicitlesbyadaptivelocaldeconvolution
    6.3.1fundamentalconceptofaldm
    6.3.2aldmfortheincompressiblenavier-stokesequations.
    6.3.3aldmforthecompressiblenavier-stokesequations

    7boundaryconditionsforlarge-eddysimulationofcompressibleflows
    7.1introduction
    7.2wallmodelingforcompressibleles
    7.2.1statementoftheproblem
    7.2.2wallboundaryconditionsinthekovasznaydecompositionframework:aninsight
    7.2.3turbulentboundarylayer:vorticityandtemperaturefields
    7.2.4turbulentboundarylayer:acousticfield
    7.2.5consequencesforthedevelopmentofcompressiblewallmodels
    7.2.6extensionofexistingwallmodelsforincompressibleflows
    7.3unsteadyturbulentinflowconditionsforcompressibleles
    7.3.1fundamentals
    7.3.2precursorsimulation:advantagesanddrawbacks
    7.3.3extraction-rescalingtechniques
    7.3.4synthetic-turbulence-basedmodels

    8subsonicapplicationswithcompressibilityeffects
    8.1homogeneousturbulence
    8.1.1context
    8.1.2afewrealizations
    8.1.3influenceofthenumericalmethod
    8.1.4sgsmodeling
    8.2channelflow
    8.2.1context
    8.2.2afewrealizations
    8.2.3influenceofthenumericalmethod
    8.2.4influenceofthesgsmodel
    8.3mixinglayer
    8.3.1context
    8.3.2afewrealizations
    8.3.3influenceofthenumericalmethod
    8.3.4influenceofthesgsmodel
    8.4boundary-layerflow
    8.4.1context
    8.4.2afewrealizations
    8.5jets
    8.5.1context
    8.5.2afewrealizations
    8.5.3influenceofthenumericalmethod
    8.5.4influenceofthesgsmodel
    8.5.5physicalanalysis
    8.6flowsovercavities
    8.6:1context
    8.6.2afewrealizations
    8.6.3influenceofthenumericalmethod
    8.6.4influenceofthesgsmodel
    8.6.5physicalanalysis

    9supersonicapplications
    9.1homogeneousturbulence
    9.2channelflow
    9.2.1context
    9.2.2afewrealizations
    9.2.3influenceofthenumericalmethod
    9.2.4influenceofthegridresolution
    9.2.5influenceofthesgsmodel
    9.3boundarylayers
    9.3.1context
    9.3.2afewrealizations
    9.3.3influenceofthenumericalmethod
    9.3.4influenceofthegridresolution
    9.3.5sgsmodeling
    9.4jets
    9.4.1context
    9.4.2afewrealizations
    9.4.3influenceofthenumericalmethod
    9.4.4influenceofthesgsmodel
    9.4.5physicalanalysis

    10supersonicapplicationswithshock-turbulenceinteraction
    10.1shock-interactionwithhomogeneousturbulence
    10.1.1phenomenologyofshock-interactionwithhomogeneousturbulence
    10.1.2lesofshock-interactionwithhomogeneousturbulence
    10.2shock-turbulenceinteractioninjets
    10.2.1phenomenologyofshock-turbulenceinteractioninjets
    10.2.2lesofshock-turbulenceinteractioninjets
    10.3shock-turbulent-boundary-layerinteraction
    10.3.1phenomenologyofshock-turbulent-boundary-layerinteraction
    10.3.2lesofcompression-rampconfigurations
    references
    index
查看详情
相关图书 / 更多
可压缩流的大涡模拟方法
可压缩量子流体力学方程及其数学理论
郭柏灵、边东芬、席肖玉、解斌强、王光武 著
可压缩流的大涡模拟方法
可压缩量子流体力学方程及其数学理论(英文版)
郭柏灵、席肖玉、解斌强、王光武、边东芬 著
可压缩流的大涡模拟方法
可压缩流与欧拉方程(英文版)
[美]克里斯托多罗(Demetrios Christodoulou)、缪爽 著
可压缩流的大涡模拟方法
可压缩性和高速多相流动
施红辉、罗喜胜 著
可压缩流的大涡模拟方法
可压缩气体润滑与弹性箔片气体轴承技术
虞烈 著
可压缩流的大涡模拟方法
可压缩流体气动力学讲义(中译版)
钱学森
可压缩流的大涡模拟方法
可压缩流体气动力学讲义(英文版)
钱学森
可压缩流的大涡模拟方法
可压缩湍流直接数值模拟
傅德薰、马延文、李新亮、王强 著