定量生理学(Quantitative Physiology)

定量生理学(Quantitative Physiology)
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: (Shangbin Chen) , [俄罗斯]
2021-04
版次: 1
ISBN: 9787568066785
定价: 138.00
装帧: 平装
开本: 16开
纸张: 胶版纸
页数: 260页
字数: 678千字
4人买过
  • Stephen Hawking says that the next 21st century will be the century of complexity and indeed now Systems Biology or Medicine means dealing with complexity. Both genome and physiome have been emerged in studying complex physiological systems. Computational and mathematical modelling has been regarded as an efficient tool to boost understanding about the living systems in normal or pathophysiological states. This textbook introduces the students and researchers to the modelling and computational study of physiology (i.e. quantitative physiology), which is an increasingly important branch of systems biology. The topics cover basic methodology, case practices and advanced applications. This book aims to build multiscale model for investigating the function in living systems, or, how organisms, organ systems, organs, cells, and biomolecules carry out the chemical or physical functions that exist in a living system. Some of the models related on gene expression, calcium signalling, neural activity, blood dynamics and bone mechanics have been addressed. This book is devoted to set a paradigm for quantitative physiology by integrating biology, mathematics, physics and informatics etc. 陈尚宾博士,武汉光电国家研究中心副教授,博士生导师。2001年于湖北师范学院获物理学学士学位,2006年于华中科技大学获生物医学工程博士学位。2006年8月至今在华中科技大学工作;其间2008年2-5月在英国Bradford大学做访问学者,2010-2012在加拿大英属哥伦比亚大学(UBC)做博士后研究两年。其研究工作涉及神经光学成像、神经系统建模、定量生理学,已主持完成国家自然科学基金两项。已在Journal of Neuroscience,Biophysical Journal,Frontiers in Neuroscience等期刊发表第一作者(含通讯)论文十余篇。2007年荣获湖北省自然科学奖一等奖(排名5)。合作者Alexey Zaikin教授是世界顶尖高校伦敦大学学院(UCL)系统医学和应用数学讲席教授,研究兴趣包括系统生物学、理论生物物理学、生物非线性动力学和随机性建模等。Zaikin教授已发表学术论文逾百篇,包含Physical Review Letters多篇,谷歌学术统计h指数29。Zaikin教授自2016年以来短期受聘于华中科技大学工程科学学院,参与《定量生理学》课程教学。 Part I Applied Methodology

    1 Introduction to Quantitative Physiology . . . . . . . . 3

    1.1 Understanding Physiology . . . . . . . . . . . . . . . . 3

    1.2 Towards Quantitative Science . . . . . . . . . . . . . 4

    1.3 FromGenome to Physiome . . . . . . . . . . . . . . . 5

    1.4 Dealing with Complexity . . . . . . . . . . . . . . . . . 6

    1.5 Why It Is Timely to Study Quantitative Physiology . . . . . . . . . . 6

    1.5.1 Multi-Omic Revolution in Biology . 6

    1.5.2 Big Data and PersonalisedMedicine 7

    1.5.3 Genetic Editing and Synthetic Biology . . . . . . . . . .  8

    1.6 Questions . . . . . 8

    References . . . . . . . . . . 8

    2 Systems and Modelling . . . . . . . . . 11

    2.1 Modelling Process . . . . . . . .  11

    2.2 Physiological Organ Systems . . . . . . . . 13

    2.3 EquationModels . . . . . . . . . . 14

    2.4 Using ODEs in Modelling Physiology . . . . . . 16

    2.4.1 Modelling Oscillations . . . . . . . . . . . 16

    2.4.2 Linear Stability Analysis . . . . . . . . . . 16

    2.4.3 Solving ODEs with the δ-Function . 17

    2.5 Conservation Laws in Physiology . . . . . . . . . . 18

    2.5.1 Conservation ofMomentumand Energy . . . . . . . . .18

    2.5.2 Boxing With and Without Gloves . . 19

    2.5.3 RotationalMovement . . . . . . . . . . . . 20

    2.6 Questions . . . . . 20

    References . . . . 21

    3 Introduction to Basic Modelling . . . . . . . 23

    3.1 Building a SimpleMathematicalModel . . . . . 23

    3.1.1 Model of Falling Flea . . . . . . . . . . . . 23

    3.1.2 Scaling Arguments. . . . . .  25

    3.1.3 Example: How High Can an Animal Jump? . . . . . . .  25

    3.1.4 Example: How Fast Can we Walk before Breaking into a Run? . . . 25

    3.2 Models that InvolveMetabolic Rate . . . . . . . . 26

    3.2.1 Modelling Metabolic Rate . . . . . . . . 26

    3.2.2 Example:Why do Large Birds find it Harder to Fly? . . . . . . . . . . . 27

    3.2.3 Ludwig von Bertalanffy’s GrowthModel . . . . . . .  28

    3.3 Questions . . . . . 29

    Reference . . . . . . . . . . 29

    xv

    xvi Contents

    4 Modelling Resources 31

    4.1 Open Courses. . 31

    4.2 Modelling Software . . . . . . .  31

    4.3 Model Repositories . . . . . . . 34

    4.4 Questions . . . . . 35

    References . . . . . . . . . . 35

    Part II Basic Case Studies

    5 Modelling Gene Expression . . . . . . .  39

    5.1 Modelling Transcriptional Regulation and Simple Networks . . . . . . . . . . . . . 39

    5.1.1 Basic Notions and Equations. . . . . . . 39

    5.1.2 Equations for Transcriptional Regulation . . . . . . .  39

    5.1.3 Examples of Some Common Genetic Networks . . . . . .  41

    5.2 Simultaneous Regulation by Inhibition and Activation . . . . . . . .. 42

    5.3 Autorepressor with Delay. . . . . . . .  43

    5.4 Bistable Genetic Switch . . . . . . . . . 44

    5.5 Questions . . . . . 44

    References . . . . . . . . . . 45

    6 Metabolic Network . . 47

    6.1 Metabolismand Network . . . . . . .  47

    6.2 ConstructingMetabolic Network . . . . . . . . . . 49

    6.3 Flux Balance Analysis . . . . . . . .  50

    6.4 MyocardialMetabolic Network. . . . . . . . . . . . 51

    6.5 Questions . . . . . 51

    References . . . . . . . . . . 52

    7 Calcium Signalling . . 53

    7.1 Functions of Calcium . . . . . .  53

    7.2 Calcium Oscillations . . . . . . . .  54

    7.3 CalciumWaves 59

    7.4 Questions . . . . . 59

    References . . . . . . . . . . 60

    8 Modelling Neural Activity . . . . . . .  61

    8.1 Introduction to Brain Research . . . . . . . . . . . . 61

    8.2 The Hodgkin–Huxley Model of Neuron Firing . . . . . . . . . 62

    8.3 The FitzHugh–Nagumo Model: A Model of the HH Model . . . . . . . . . . . . . 63

    8.3.1 Analysis of Phase Plane with Case Ia = 0 . . . . . . . .  63

    8.3.2 Case Ia > 0 and Conditions to Observe a Limit Cycle . . . . . . . . . . 64

    8.4 Questions . . . . . 65

    References . . . . . . . . . . 66

    9 Blood Dynamics . . . . 67

    9.1 Blood Hydrodynamics . . . . . . .  67

    9.1.1 Basic Equations . . . . . . . . . . . . . . . . . 67

    9.1.2 Poiseuille’s Law . . . . . . . . 67

    9.2 Properties of Blood and ESR . . . . . . .  68

    9.3 Elasticity of Blood Vessels . . . . . .  69

    9.4 The PulseWave 69

    9.5 Bernoulli’s Equation and What Happened to Arturo Toscanini in 1954 . . . . 70

    9.6 The Korotkoff Sounds . . . . . . . .  71

    9.7 Questions . . . . . 71

    Reference . . . . . . . . . . . 72

    Contents xvii

    10 Bone and Body Mechanics . . . . .  73

    10.1 Elastic Deformations and the Hooke’s Law. . 73

    10.2 Why Long Bones are Hollow or Bending of Bones . . . . . . . . 74

    10.3 Viscoelasticity of Bones . . . . . . .  77

    10.4 Questions . . . . . 83

    Reference . . . . . . . . . . 83

    Part III Complex Applications

    11 Constructive Effects of Noise . . . . . . . 87

    11.1 Influence of Stochasticity . . . . . .  87

    11.2 Review of Noise-Induced Effects . . . . . . . . . . 89

    11.3 NewMechanisms of Noise-Induced Effects . 91

    11.4 Noise-Induced Effects . . . . . . 93

    11.4.1 Stochastic Resonance in Bone Remodelling as a Tool to Prevent

    Bone Loss in Osteopenic Conditions 93

    11.4.2 Transitions in the Presence of Additive Noise and On-Off

    Intermittency . . . . . .  98

    11.4.3 Phase Transitions Induced by Additive Noise. . . . . . . . 103

    11.4.4 Noise-Induced Excitability . . . . . . . . 109

    11.5 Doubly Stochastic Effects . . . . . . . . 113

    11.5.1 Doubly Stochastic Resonance . . . . . . 113

    11.5.2 A Simple Electronic Circuit Model for Doubly Stochastic

    Resonance . . . . . . . . . .  117

    11.5.3 Doubly Stochastic Coherence: Periodicity via Noise-Induced

    Symmetry in Bistable NeuralModels . . . . . . . . . . . 120

    11.6 New Effects in Noise-Induced Propagation . . 125

    11.6.1 Noise-Induced Propagation in Monostable Media . . . . . . . . .125

    11.6.2 Noise-Induced Propagation and Frequency Selection of

    Bichromatic Signals in BistableMedia . . . . . . . . 128

    11.7 Noise-Induced Resonant Effects and Resonant Effects in the Presence of

    Noise . . . . . . . . 129

    11.7.1 Vibrational Resonance in a Noise-Induced Structure . . . . . . . . . . . . 129

    11.7.2 System Size Resonance in Coupled Noisy Systems . . . . . . . . . . . . . 133

    11.7.3 Coherence Resonance and Polymodality in Inhibitory Coupled

    Excitable Oscillators . . . . . . . . . . . . . 136

    11.8 Applications and Open Questions . . . . . . . . . . 140

    11.9 Questions . . . . . 141

    References . . . . . . . . . . 141

    12 Complex and Surprising Dynamics in Gene Regulatory Networks . . . . . . . . . . 147

    12.1 Nonlinear Dynamics in Synthetic Biology. . . 147

    12.2 Clustering and Oscillation Death in Genetic Networks . . . . . . .  148

    12.2.1 The Repressilator with QuorumSensing Coupling . . . . . . . . . . . . . 148

    12.2.2 The Dynamical Regimes for a Minimal System of Repressilators

    Coupled via Phase-Repulsive Quorum Sensing . . . . . . . .  150

    12.3 Systems Size Effects in Coupled Genetic Networks . . . . . . .  152

    12.3.1 Clustering and Enhanced Complexity of the Inhomogeneous

    Regimes . . . . . . . .  153

    12.3.2 Clustering Due to Regular Oscillations in Cell Colonies . . . . . . . . . 154

    12.3.3 Parameter Heterogeneity on the Regular-Attractor Regime . . . . . . 155

    12.3.4 Irregular and Chaotic Self-Oscillations in Colonies of Identical

    Cells . 155

    xviii Contents

    12.4 The Constructive Role of Noise in Genetic Networks. . . . . . . . .  157

    12.4.1 Noise-Induced Oscillations in Circadian Gene Networks . . . . . . . . 157

    12.4.2 Noise-Induced Synchronisation and Rhythms. . . . . . . . .  158

    12.5 Speed Dependent Cellular Decision Making (SdCDM) in Noisy Genetic

    Networks . . . . . 160

    12.5.1 Speed Dependent Cellular Decision Making in a Small Genetic

    Switch 161

    12.5.2 Speed Dependent Cellular Decision Making in Large Genetic

    Networks . . . . . . . . .  162

    12.6 What is a Genetic Intelligence? . . . . . . . . . . . . 164

    12.6.1 Supervised Learning . . . . . . . . . . . . . 164

    12.6.2 Associative Learning . . . . . . . . . . . . . 166

    12.6.3 Classification of Complex Inputs . . . 166

    12.6.4 Applications and Implications of Bio-Artificial Intelligence . . . . . . 169

    12.7 Effect of Noise in Intelligent Cellular Decision Making . . . . . . . . . . . . . . . . . 169

    12.7.1 Stochastic Resonance in an Intracellular Associative Genetic

    Perceptron . . . . . . .  169

    12.7.2 Stochastic Resonance in Classifying Genetic Perceptron . . . . . . . . 174

    12.8 Questions . . . . . 183

    References . . . . . . . . . . 183

    13 Modelling Complex Phenomena in Physiology . . . 189

    13.1 Cortical Spreading Depression (CSD) . . . . . . 189

    13.1.1 What is CSD . . . . . . . .  189

    13.1.2 Models of CSD . . . . . . . 189

    13.1.3 Applications of CSDModels . . . . . . 192

    13.1.4 Questions. . . . . . . . 196

    13.2 Heart Physiome 197

    13.2.1 Cardiovascular System. . . . . . . . . . . . 197

    13.2.2 Heart Physiome . . . . . . . . . . . . . . . . . 198

    13.2.3 Multi-Level Modelling . . . . . . . . . . . . 199

    13.2.4 Questions. . . . . . . 201

    13.3 Modelling of Kidney Autoregulation . . . . . . . 202

    13.3.1 Renal Physiology . . . . . . .  202

    13.3.2 Experimental Observations . . . . . . . . 204

    13.3.3 Model of Nephron Autoregulation . . 205

    13.3.4 Questions. . . . . . . . . .209

    13.4 Brain Project . . 209

    13.4.1 Mystery of Brain . . . . . . . . . . . . . . . . 209

    13.4.2 Brain Projects . . . . . . . . . . . . . . . . . . . 210

    13.4.3 Brain Simulation . . . . . . .  212

    13.4.4 Mammalian Brain as a Network of Networks . . . . . . .215

    13.4.5 Calculation of Integrated Information . . . . . . . . . . . . . . 223

    13.4.6 Astrocytes and Integrated Information Theory of Consciousness . . 224

    13.4.7 Questions. . . . . . . . . . . . 233

    References . . . . . . . . . . 233

    Acronyms

    3M The modelling, model, and modeller are introduced in this book of Quantitative Physiology

    AcCoA Acetyl-CoA: It is an intermediary molecule that participates in many biochemical reactions in carbohydrates,

    fatty acids, and amino acids metabolism

    ADP Adenosine diphosphate: It is an important organic compound in metabolism and is essential to the flow of

    energy in living cells

    AI Artificial intelligence: It is sometimes called machine intelligence, in contrast to the human intelligence

    AIDS Acquired immunodeficiency syndrome: It is a transmissible disease caused by the human immunodeficiency

    virus (HIV)

    AP Action potential: An action potential is a rapid rise and subsequent fall in membrane potential of a neuron

    ATP Adenosine triphosphate: The ubiquitous molecule necessary for intracellular energy storage and transfer

    BMI Body mass index: It is a measure of body fat based on height and weight that applies to adult men and women

    BRAIN Brain Research through Advancing Innovative Neurotechnologies: The BRAIN Initiative launched in April

    2013 is focused on revolutionising our understanding of the human brain

    CA Cellular automaton: It is a specifically shaped group of model cells known for evolving through multiple and

    discrete time steps according to a rule set depending on neighbouring cell states

    CICR Calcium-induced calcium release: The autocatalytic release of Ca2  from the endoplasmic or sarcoplasmic

    reticulum through IP3 receptors or ryanodine receptors. CICR causes the fast release of large amounts of

    Ca2  from internal stores and is the basis for Ca2  oscillations and waves in a wide variety of cell types

    CNS Central nervous system: It is the part of the nervous system consisting of the brain and spinal cord

    CR Coherence resonance: It refers to a phenomenon in which addition of certain amount of external noise in

    excitable system makes its oscillatory responses most coherent

    CSD Cortical spreading depression: It is characterised by the propagation of depolarisation waves across the grey

    matter at a velocity of 2–5 mm/min

    CVD Cardiovascular disease: It is a class of diseases that involve the heart or blood vessels

    DFBA Dynamic flux balance analysis: It is the dynamic extension of flux balance analysis (FBA)

    DNA Deoxyribonucleic acid: It is a molecule comprised of two chains that coil around each other to form a double

    helix carrying the genetic information

    DSC Doubly stochastic coherence

    DSE Doubly stochastic effects

    EC coupling Excitation–contraction coupling: It describes a series of events, from the production of an electrical impulse

    (action potential) to the contraction of muscles

    ECF Extracellular fluid: The portion of the body fluid comprises the interstitial fluid and blood plasma

    ECG Electrocardiogram (or EKG): The record is produced by electrocardiography to represent the heart’s electrical

    action

    ECS Extracellular space: It is usually taken to be outside the plasma membranes and occupied by fluid

    EEG Electroencephalography: It is an electrophysiological monitoring method to record electrical activity of the

    brain

    ER Endoplasmic reticulum: An internal cellular compartment in non-muscle cells acting as an important Ca2 

    store. The analogous compartment in muscle cells is termed the sarcoplasmic reticulum (SR)

    ETC Electron transport chain

    FA Fatty acid: It is the building block of the fat in our bodies and in the food we eat

    FBA Flux balance analysis: It is a widely used approach for studying biochemical networks

    xix

    xx Acronyms

    FHC Familial hypertrophic cardiomyopathy: It is a heart condition characterised by thickening (hypertrophy) of

    the heart (cardiac) muscle

    FHN FitzHugh–Nagumo model: It is named after Richard FitzHugh and Jin-Ichi Nagumo for describing a

    prototype of an excitable system (e.g., a neuron)

    GFP Green fluorescent protein: A protein, originally derived from a jellyfish, that exhibits bright green fluorescence

    when exposed to blue or ultraviolet light

    GRN Gene regulatory network or genetic regulatory network: It is a collection of regulators that interact with each

    other and with other substances in the cell to govern the gene expression levels of mRNA and proteins

    Glu Glucose: Glucose is a simple sugar with the molecular formula C6H12O6

    Gly Glycogen: It is amultibranched polysaccharide of glucose that serves as a form of energy storage in organisms

    HBP Human Brain Project: It is a European Commission Future and Emerging Technologies Flagship started on

    1 October 2013

    HGP Human Genome Project: It is an international project with the goal of determining the sequence of nucleotide

    base pairs that make up human DNA and of identifying and mapping all genes of the human genome from

    both a physical and a functional standpoint

    HH model The Hodgkin–Huxley model: It is a mathematical model that describes how action potentials in neurons are

    initiated and propagated

    II Integrated information: It is ameasure of the degree to which the components of a system areworking together

    to produce outputs

    IP3 Inositol 1,4,5-trisphosphate: A second messenger responsible for the release of intracellular Ca2  from

    internal stores, through IP3 receptors

    ICS Intracellular space: It is taken to be inside the cell

    iPS Induced pluripotent stem cells: They are a type of pluripotent stem cell that can be generated directly from

    adult cells

    ISIH Interspike interval histogram

    IUPS The International Union of Physiological Societies

    Lac Lactate (or Lactic acid): It has the molecular formula CH3CH(OH)CO2H

    LC Limit cycle

    MFT Mean field theory: It studies the behaviour of large and complex stochastic models by using a simpler model

    MOMA Minimisation of metabolic adjustment: It is used as an objective function for FBA

    NADH Nicotinamide adenine dinucleotide hydride

    NADPH Nicotinamide adenine dinucleotide phosphate

    NIE Noise-induced excitability

    NIT Noise-induced transition

    NSR National Simulation Resource

    ODE Ordinary differential equation: It is a differential equation containing one or more functions of one

    independent variable and its derivatives

    PC Phosphocreatine: It is a phosphorylated creatine molecule that serves as a rapidly mobilisable reserve of

    high-energy phosphates in skeletal muscle and the brain

    PDE Partial differential equation: It is a differential equation that contains beforehand unknown multivariable

    functions and their partial derivatives

    PDF Probability distribution function

    PE Potential energy

    PNS Peripheral nervous system

    Pyr Pyruvate: It is a key intermediate in several metabolic pathways throughout the cell

    RD Reaction–diffusion: A reaction–diffusion system consists of the diffusion of material and the production of

    that material by reaction

    RFP Red fluorescent protein

    SCN The suprachiasmatic nuclei

    SdCDM Speed dependent cellular decision making

    SERCA Sarcoplasmic/endoplasmic reticulum Ca2  ATPase: A Ca2  ATPase pump that transports Ca2  up its

    concentration gradient from the cytoplasm to the ER/SR

    SGN Synthetic gene network

    Acronyms xxi

    SNR Signal to noise ratio

    SR Sarcoplasmic reticulum:An internal cellular compartment in muscle cells that functions as an important Ca2 

    store. The analogous compartment in non-muscle cells is called the endoplasmic reticulum (ER)

    SR Stochastic resonance: It is a phenomenon where a signal can be boosted by adding white noise to the signal

    TCA cycle Tricarboxylic acid cycle or the Krebs cycle: It is a series of chemical reactions used by all aerobic organisms

    to generate energy through the oxidation of acetyl-CoA into carbon dioxide and chemical energy in the form

    of guanosine triphosphate (GTP)

    TF Transcription factor: It is a protein that binds to specific DNA sequences, thereby controlling the rate of

    transcription of genetic information from DNA to messenger RNA

    TGF Tubuloglomerular feedback

    UCS Ultimate compressive stress

    VGCC Voltage-gated Ca2  channels: Membrane Ca2  channels that open in response to depolarisation of the cell

    membrane

    VR Vibrational resonance

    WHO World Health Organization: It is a specialised agency of the United Nations to direct international health 
  • 内容简介:
    Stephen Hawking says that the next 21st century will be the century of complexity and indeed now Systems Biology or Medicine means dealing with complexity. Both genome and physiome have been emerged in studying complex physiological systems. Computational and mathematical modelling has been regarded as an efficient tool to boost understanding about the living systems in normal or pathophysiological states. This textbook introduces the students and researchers to the modelling and computational study of physiology (i.e. quantitative physiology), which is an increasingly important branch of systems biology. The topics cover basic methodology, case practices and advanced applications. This book aims to build multiscale model for investigating the function in living systems, or, how organisms, organ systems, organs, cells, and biomolecules carry out the chemical or physical functions that exist in a living system. Some of the models related on gene expression, calcium signalling, neural activity, blood dynamics and bone mechanics have been addressed. This book is devoted to set a paradigm for quantitative physiology by integrating biology, mathematics, physics and informatics etc.
  • 作者简介:
    陈尚宾博士,武汉光电国家研究中心副教授,博士生导师。2001年于湖北师范学院获物理学学士学位,2006年于华中科技大学获生物医学工程博士学位。2006年8月至今在华中科技大学工作;其间2008年2-5月在英国Bradford大学做访问学者,2010-2012在加拿大英属哥伦比亚大学(UBC)做博士后研究两年。其研究工作涉及神经光学成像、神经系统建模、定量生理学,已主持完成国家自然科学基金两项。已在Journal of Neuroscience,Biophysical Journal,Frontiers in Neuroscience等期刊发表第一作者(含通讯)论文十余篇。2007年荣获湖北省自然科学奖一等奖(排名5)。合作者Alexey Zaikin教授是世界顶尖高校伦敦大学学院(UCL)系统医学和应用数学讲席教授,研究兴趣包括系统生物学、理论生物物理学、生物非线性动力学和随机性建模等。Zaikin教授已发表学术论文逾百篇,包含Physical Review Letters多篇,谷歌学术统计h指数29。Zaikin教授自2016年以来短期受聘于华中科技大学工程科学学院,参与《定量生理学》课程教学。
  • 目录:
    Part I Applied Methodology

    1 Introduction to Quantitative Physiology . . . . . . . . 3

    1.1 Understanding Physiology . . . . . . . . . . . . . . . . 3

    1.2 Towards Quantitative Science . . . . . . . . . . . . . 4

    1.3 FromGenome to Physiome . . . . . . . . . . . . . . . 5

    1.4 Dealing with Complexity . . . . . . . . . . . . . . . . . 6

    1.5 Why It Is Timely to Study Quantitative Physiology . . . . . . . . . . 6

    1.5.1 Multi-Omic Revolution in Biology . 6

    1.5.2 Big Data and PersonalisedMedicine 7

    1.5.3 Genetic Editing and Synthetic Biology . . . . . . . . . .  8

    1.6 Questions . . . . . 8

    References . . . . . . . . . . 8

    2 Systems and Modelling . . . . . . . . . 11

    2.1 Modelling Process . . . . . . . .  11

    2.2 Physiological Organ Systems . . . . . . . . 13

    2.3 EquationModels . . . . . . . . . . 14

    2.4 Using ODEs in Modelling Physiology . . . . . . 16

    2.4.1 Modelling Oscillations . . . . . . . . . . . 16

    2.4.2 Linear Stability Analysis . . . . . . . . . . 16

    2.4.3 Solving ODEs with the δ-Function . 17

    2.5 Conservation Laws in Physiology . . . . . . . . . . 18

    2.5.1 Conservation ofMomentumand Energy . . . . . . . . .18

    2.5.2 Boxing With and Without Gloves . . 19

    2.5.3 RotationalMovement . . . . . . . . . . . . 20

    2.6 Questions . . . . . 20

    References . . . . 21

    3 Introduction to Basic Modelling . . . . . . . 23

    3.1 Building a SimpleMathematicalModel . . . . . 23

    3.1.1 Model of Falling Flea . . . . . . . . . . . . 23

    3.1.2 Scaling Arguments. . . . . .  25

    3.1.3 Example: How High Can an Animal Jump? . . . . . . .  25

    3.1.4 Example: How Fast Can we Walk before Breaking into a Run? . . . 25

    3.2 Models that InvolveMetabolic Rate . . . . . . . . 26

    3.2.1 Modelling Metabolic Rate . . . . . . . . 26

    3.2.2 Example:Why do Large Birds find it Harder to Fly? . . . . . . . . . . . 27

    3.2.3 Ludwig von Bertalanffy’s GrowthModel . . . . . . .  28

    3.3 Questions . . . . . 29

    Reference . . . . . . . . . . 29

    xv

    xvi Contents

    4 Modelling Resources 31

    4.1 Open Courses. . 31

    4.2 Modelling Software . . . . . . .  31

    4.3 Model Repositories . . . . . . . 34

    4.4 Questions . . . . . 35

    References . . . . . . . . . . 35

    Part II Basic Case Studies

    5 Modelling Gene Expression . . . . . . .  39

    5.1 Modelling Transcriptional Regulation and Simple Networks . . . . . . . . . . . . . 39

    5.1.1 Basic Notions and Equations. . . . . . . 39

    5.1.2 Equations for Transcriptional Regulation . . . . . . .  39

    5.1.3 Examples of Some Common Genetic Networks . . . . . .  41

    5.2 Simultaneous Regulation by Inhibition and Activation . . . . . . . .. 42

    5.3 Autorepressor with Delay. . . . . . . .  43

    5.4 Bistable Genetic Switch . . . . . . . . . 44

    5.5 Questions . . . . . 44

    References . . . . . . . . . . 45

    6 Metabolic Network . . 47

    6.1 Metabolismand Network . . . . . . .  47

    6.2 ConstructingMetabolic Network . . . . . . . . . . 49

    6.3 Flux Balance Analysis . . . . . . . .  50

    6.4 MyocardialMetabolic Network. . . . . . . . . . . . 51

    6.5 Questions . . . . . 51

    References . . . . . . . . . . 52

    7 Calcium Signalling . . 53

    7.1 Functions of Calcium . . . . . .  53

    7.2 Calcium Oscillations . . . . . . . .  54

    7.3 CalciumWaves 59

    7.4 Questions . . . . . 59

    References . . . . . . . . . . 60

    8 Modelling Neural Activity . . . . . . .  61

    8.1 Introduction to Brain Research . . . . . . . . . . . . 61

    8.2 The Hodgkin–Huxley Model of Neuron Firing . . . . . . . . . 62

    8.3 The FitzHugh–Nagumo Model: A Model of the HH Model . . . . . . . . . . . . . 63

    8.3.1 Analysis of Phase Plane with Case Ia = 0 . . . . . . . .  63

    8.3.2 Case Ia > 0 and Conditions to Observe a Limit Cycle . . . . . . . . . . 64

    8.4 Questions . . . . . 65

    References . . . . . . . . . . 66

    9 Blood Dynamics . . . . 67

    9.1 Blood Hydrodynamics . . . . . . .  67

    9.1.1 Basic Equations . . . . . . . . . . . . . . . . . 67

    9.1.2 Poiseuille’s Law . . . . . . . . 67

    9.2 Properties of Blood and ESR . . . . . . .  68

    9.3 Elasticity of Blood Vessels . . . . . .  69

    9.4 The PulseWave 69

    9.5 Bernoulli’s Equation and What Happened to Arturo Toscanini in 1954 . . . . 70

    9.6 The Korotkoff Sounds . . . . . . . .  71

    9.7 Questions . . . . . 71

    Reference . . . . . . . . . . . 72

    Contents xvii

    10 Bone and Body Mechanics . . . . .  73

    10.1 Elastic Deformations and the Hooke’s Law. . 73

    10.2 Why Long Bones are Hollow or Bending of Bones . . . . . . . . 74

    10.3 Viscoelasticity of Bones . . . . . . .  77

    10.4 Questions . . . . . 83

    Reference . . . . . . . . . . 83

    Part III Complex Applications

    11 Constructive Effects of Noise . . . . . . . 87

    11.1 Influence of Stochasticity . . . . . .  87

    11.2 Review of Noise-Induced Effects . . . . . . . . . . 89

    11.3 NewMechanisms of Noise-Induced Effects . 91

    11.4 Noise-Induced Effects . . . . . . 93

    11.4.1 Stochastic Resonance in Bone Remodelling as a Tool to Prevent

    Bone Loss in Osteopenic Conditions 93

    11.4.2 Transitions in the Presence of Additive Noise and On-Off

    Intermittency . . . . . .  98

    11.4.3 Phase Transitions Induced by Additive Noise. . . . . . . . 103

    11.4.4 Noise-Induced Excitability . . . . . . . . 109

    11.5 Doubly Stochastic Effects . . . . . . . . 113

    11.5.1 Doubly Stochastic Resonance . . . . . . 113

    11.5.2 A Simple Electronic Circuit Model for Doubly Stochastic

    Resonance . . . . . . . . . .  117

    11.5.3 Doubly Stochastic Coherence: Periodicity via Noise-Induced

    Symmetry in Bistable NeuralModels . . . . . . . . . . . 120

    11.6 New Effects in Noise-Induced Propagation . . 125

    11.6.1 Noise-Induced Propagation in Monostable Media . . . . . . . . .125

    11.6.2 Noise-Induced Propagation and Frequency Selection of

    Bichromatic Signals in BistableMedia . . . . . . . . 128

    11.7 Noise-Induced Resonant Effects and Resonant Effects in the Presence of

    Noise . . . . . . . . 129

    11.7.1 Vibrational Resonance in a Noise-Induced Structure . . . . . . . . . . . . 129

    11.7.2 System Size Resonance in Coupled Noisy Systems . . . . . . . . . . . . . 133

    11.7.3 Coherence Resonance and Polymodality in Inhibitory Coupled

    Excitable Oscillators . . . . . . . . . . . . . 136

    11.8 Applications and Open Questions . . . . . . . . . . 140

    11.9 Questions . . . . . 141

    References . . . . . . . . . . 141

    12 Complex and Surprising Dynamics in Gene Regulatory Networks . . . . . . . . . . 147

    12.1 Nonlinear Dynamics in Synthetic Biology. . . 147

    12.2 Clustering and Oscillation Death in Genetic Networks . . . . . . .  148

    12.2.1 The Repressilator with QuorumSensing Coupling . . . . . . . . . . . . . 148

    12.2.2 The Dynamical Regimes for a Minimal System of Repressilators

    Coupled via Phase-Repulsive Quorum Sensing . . . . . . . .  150

    12.3 Systems Size Effects in Coupled Genetic Networks . . . . . . .  152

    12.3.1 Clustering and Enhanced Complexity of the Inhomogeneous

    Regimes . . . . . . . .  153

    12.3.2 Clustering Due to Regular Oscillations in Cell Colonies . . . . . . . . . 154

    12.3.3 Parameter Heterogeneity on the Regular-Attractor Regime . . . . . . 155

    12.3.4 Irregular and Chaotic Self-Oscillations in Colonies of Identical

    Cells . 155

    xviii Contents

    12.4 The Constructive Role of Noise in Genetic Networks. . . . . . . . .  157

    12.4.1 Noise-Induced Oscillations in Circadian Gene Networks . . . . . . . . 157

    12.4.2 Noise-Induced Synchronisation and Rhythms. . . . . . . . .  158

    12.5 Speed Dependent Cellular Decision Making (SdCDM) in Noisy Genetic

    Networks . . . . . 160

    12.5.1 Speed Dependent Cellular Decision Making in a Small Genetic

    Switch 161

    12.5.2 Speed Dependent Cellular Decision Making in Large Genetic

    Networks . . . . . . . . .  162

    12.6 What is a Genetic Intelligence? . . . . . . . . . . . . 164

    12.6.1 Supervised Learning . . . . . . . . . . . . . 164

    12.6.2 Associative Learning . . . . . . . . . . . . . 166

    12.6.3 Classification of Complex Inputs . . . 166

    12.6.4 Applications and Implications of Bio-Artificial Intelligence . . . . . . 169

    12.7 Effect of Noise in Intelligent Cellular Decision Making . . . . . . . . . . . . . . . . . 169

    12.7.1 Stochastic Resonance in an Intracellular Associative Genetic

    Perceptron . . . . . . .  169

    12.7.2 Stochastic Resonance in Classifying Genetic Perceptron . . . . . . . . 174

    12.8 Questions . . . . . 183

    References . . . . . . . . . . 183

    13 Modelling Complex Phenomena in Physiology . . . 189

    13.1 Cortical Spreading Depression (CSD) . . . . . . 189

    13.1.1 What is CSD . . . . . . . .  189

    13.1.2 Models of CSD . . . . . . . 189

    13.1.3 Applications of CSDModels . . . . . . 192

    13.1.4 Questions. . . . . . . . 196

    13.2 Heart Physiome 197

    13.2.1 Cardiovascular System. . . . . . . . . . . . 197

    13.2.2 Heart Physiome . . . . . . . . . . . . . . . . . 198

    13.2.3 Multi-Level Modelling . . . . . . . . . . . . 199

    13.2.4 Questions. . . . . . . 201

    13.3 Modelling of Kidney Autoregulation . . . . . . . 202

    13.3.1 Renal Physiology . . . . . . .  202

    13.3.2 Experimental Observations . . . . . . . . 204

    13.3.3 Model of Nephron Autoregulation . . 205

    13.3.4 Questions. . . . . . . . . .209

    13.4 Brain Project . . 209

    13.4.1 Mystery of Brain . . . . . . . . . . . . . . . . 209

    13.4.2 Brain Projects . . . . . . . . . . . . . . . . . . . 210

    13.4.3 Brain Simulation . . . . . . .  212

    13.4.4 Mammalian Brain as a Network of Networks . . . . . . .215

    13.4.5 Calculation of Integrated Information . . . . . . . . . . . . . . 223

    13.4.6 Astrocytes and Integrated Information Theory of Consciousness . . 224

    13.4.7 Questions. . . . . . . . . . . . 233

    References . . . . . . . . . . 233

    Acronyms

    3M The modelling, model, and modeller are introduced in this book of Quantitative Physiology

    AcCoA Acetyl-CoA: It is an intermediary molecule that participates in many biochemical reactions in carbohydrates,

    fatty acids, and amino acids metabolism

    ADP Adenosine diphosphate: It is an important organic compound in metabolism and is essential to the flow of

    energy in living cells

    AI Artificial intelligence: It is sometimes called machine intelligence, in contrast to the human intelligence

    AIDS Acquired immunodeficiency syndrome: It is a transmissible disease caused by the human immunodeficiency

    virus (HIV)

    AP Action potential: An action potential is a rapid rise and subsequent fall in membrane potential of a neuron

    ATP Adenosine triphosphate: The ubiquitous molecule necessary for intracellular energy storage and transfer

    BMI Body mass index: It is a measure of body fat based on height and weight that applies to adult men and women

    BRAIN Brain Research through Advancing Innovative Neurotechnologies: The BRAIN Initiative launched in April

    2013 is focused on revolutionising our understanding of the human brain

    CA Cellular automaton: It is a specifically shaped group of model cells known for evolving through multiple and

    discrete time steps according to a rule set depending on neighbouring cell states

    CICR Calcium-induced calcium release: The autocatalytic release of Ca2  from the endoplasmic or sarcoplasmic

    reticulum through IP3 receptors or ryanodine receptors. CICR causes the fast release of large amounts of

    Ca2  from internal stores and is the basis for Ca2  oscillations and waves in a wide variety of cell types

    CNS Central nervous system: It is the part of the nervous system consisting of the brain and spinal cord

    CR Coherence resonance: It refers to a phenomenon in which addition of certain amount of external noise in

    excitable system makes its oscillatory responses most coherent

    CSD Cortical spreading depression: It is characterised by the propagation of depolarisation waves across the grey

    matter at a velocity of 2–5 mm/min

    CVD Cardiovascular disease: It is a class of diseases that involve the heart or blood vessels

    DFBA Dynamic flux balance analysis: It is the dynamic extension of flux balance analysis (FBA)

    DNA Deoxyribonucleic acid: It is a molecule comprised of two chains that coil around each other to form a double

    helix carrying the genetic information

    DSC Doubly stochastic coherence

    DSE Doubly stochastic effects

    EC coupling Excitation–contraction coupling: It describes a series of events, from the production of an electrical impulse

    (action potential) to the contraction of muscles

    ECF Extracellular fluid: The portion of the body fluid comprises the interstitial fluid and blood plasma

    ECG Electrocardiogram (or EKG): The record is produced by electrocardiography to represent the heart’s electrical

    action

    ECS Extracellular space: It is usually taken to be outside the plasma membranes and occupied by fluid

    EEG Electroencephalography: It is an electrophysiological monitoring method to record electrical activity of the

    brain

    ER Endoplasmic reticulum: An internal cellular compartment in non-muscle cells acting as an important Ca2 

    store. The analogous compartment in muscle cells is termed the sarcoplasmic reticulum (SR)

    ETC Electron transport chain

    FA Fatty acid: It is the building block of the fat in our bodies and in the food we eat

    FBA Flux balance analysis: It is a widely used approach for studying biochemical networks

    xix

    xx Acronyms

    FHC Familial hypertrophic cardiomyopathy: It is a heart condition characterised by thickening (hypertrophy) of

    the heart (cardiac) muscle

    FHN FitzHugh–Nagumo model: It is named after Richard FitzHugh and Jin-Ichi Nagumo for describing a

    prototype of an excitable system (e.g., a neuron)

    GFP Green fluorescent protein: A protein, originally derived from a jellyfish, that exhibits bright green fluorescence

    when exposed to blue or ultraviolet light

    GRN Gene regulatory network or genetic regulatory network: It is a collection of regulators that interact with each

    other and with other substances in the cell to govern the gene expression levels of mRNA and proteins

    Glu Glucose: Glucose is a simple sugar with the molecular formula C6H12O6

    Gly Glycogen: It is amultibranched polysaccharide of glucose that serves as a form of energy storage in organisms

    HBP Human Brain Project: It is a European Commission Future and Emerging Technologies Flagship started on

    1 October 2013

    HGP Human Genome Project: It is an international project with the goal of determining the sequence of nucleotide

    base pairs that make up human DNA and of identifying and mapping all genes of the human genome from

    both a physical and a functional standpoint

    HH model The Hodgkin–Huxley model: It is a mathematical model that describes how action potentials in neurons are

    initiated and propagated

    II Integrated information: It is ameasure of the degree to which the components of a system areworking together

    to produce outputs

    IP3 Inositol 1,4,5-trisphosphate: A second messenger responsible for the release of intracellular Ca2  from

    internal stores, through IP3 receptors

    ICS Intracellular space: It is taken to be inside the cell

    iPS Induced pluripotent stem cells: They are a type of pluripotent stem cell that can be generated directly from

    adult cells

    ISIH Interspike interval histogram

    IUPS The International Union of Physiological Societies

    Lac Lactate (or Lactic acid): It has the molecular formula CH3CH(OH)CO2H

    LC Limit cycle

    MFT Mean field theory: It studies the behaviour of large and complex stochastic models by using a simpler model

    MOMA Minimisation of metabolic adjustment: It is used as an objective function for FBA

    NADH Nicotinamide adenine dinucleotide hydride

    NADPH Nicotinamide adenine dinucleotide phosphate

    NIE Noise-induced excitability

    NIT Noise-induced transition

    NSR National Simulation Resource

    ODE Ordinary differential equation: It is a differential equation containing one or more functions of one

    independent variable and its derivatives

    PC Phosphocreatine: It is a phosphorylated creatine molecule that serves as a rapidly mobilisable reserve of

    high-energy phosphates in skeletal muscle and the brain

    PDE Partial differential equation: It is a differential equation that contains beforehand unknown multivariable

    functions and their partial derivatives

    PDF Probability distribution function

    PE Potential energy

    PNS Peripheral nervous system

    Pyr Pyruvate: It is a key intermediate in several metabolic pathways throughout the cell

    RD Reaction–diffusion: A reaction–diffusion system consists of the diffusion of material and the production of

    that material by reaction

    RFP Red fluorescent protein

    SCN The suprachiasmatic nuclei

    SdCDM Speed dependent cellular decision making

    SERCA Sarcoplasmic/endoplasmic reticulum Ca2  ATPase: A Ca2  ATPase pump that transports Ca2  up its

    concentration gradient from the cytoplasm to the ER/SR

    SGN Synthetic gene network

    Acronyms xxi

    SNR Signal to noise ratio

    SR Sarcoplasmic reticulum:An internal cellular compartment in muscle cells that functions as an important Ca2 

    store. The analogous compartment in non-muscle cells is called the endoplasmic reticulum (ER)

    SR Stochastic resonance: It is a phenomenon where a signal can be boosted by adding white noise to the signal

    TCA cycle Tricarboxylic acid cycle or the Krebs cycle: It is a series of chemical reactions used by all aerobic organisms

    to generate energy through the oxidation of acetyl-CoA into carbon dioxide and chemical energy in the form

    of guanosine triphosphate (GTP)

    TF Transcription factor: It is a protein that binds to specific DNA sequences, thereby controlling the rate of

    transcription of genetic information from DNA to messenger RNA

    TGF Tubuloglomerular feedback

    UCS Ultimate compressive stress

    VGCC Voltage-gated Ca2  channels: Membrane Ca2  channels that open in response to depolarisation of the cell

    membrane

    VR Vibrational resonance

    WHO World Health Organization: It is a specialised agency of the United Nations to direct international health 
查看详情
12
相关图书 / 更多
定量生理学(Quantitative Physiology)
定量药理与药物临床评价
谢海棠
定量生理学(Quantitative Physiology)
定量化学分析实验(胡伟光)(第四版)
胡伟光、张文英 编
定量生理学(Quantitative Physiology)
定量地球科学(数据分析地质统计学及储层表征和建模方法)
[美]马元哲 著;尹志军、黄文松、马元哲、曹仁义、李胜利 译
定量生理学(Quantitative Physiology)
定量分析化学实验(周文峰)
鲁润华 主编;周文峰
定量生理学(Quantitative Physiology)
定量化学分析(黄一石)(第四版)
黄一石、黄一波、乔子荣 编
定量生理学(Quantitative Physiology)
定量遥感:理念与算法(第二版)
梁顺林 著
定量生理学(Quantitative Physiology)
定量遥感实验
肖青;闻建光;唐伯惠;吴小丹
定量生理学(Quantitative Physiology)
定量分析化学/普通高等教育农业农村部“十三五”规划教材
周红 编
定量生理学(Quantitative Physiology)
定量研究中的稳健性检验(格致方法·社会科学研究方法译丛)
[英]埃里克·诺伊迈耶(Eric,Neumayer),(奥)托马斯·普吕佩尔(Thomas,Plumper 著;韩永辉,谭锐 译
定量生理学(Quantitative Physiology)
定量研究方法
胡荣
定量生理学(Quantitative Physiology)
定量分析化学实验
饶震红、赵士铎 编
定量生理学(Quantitative Physiology)
定量分析技术
李文静 王坤