突围算法:机器学习算法应用

突围算法:机器学习算法应用
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者:
2020-08
版次: 1
ISBN: 9787121392634
定价: 79.00
装帧: 平装
开本: 16开
页数: 264页
  • 本书主要对算法的原理进行了介绍,并融合大量的应用案例,详细介绍使用机器学习模型的一般方法,帮助读者理解算法原理,学会模型设计。本书首先介绍数据理解、数据的处理与特征,帮助读者认识数据;然后从宏观、系统的角度介绍机器学习算法分类、一般学习规则及机器学习的基础应用;接着根据项目研发的流程,详细介绍了模型选择和结构设计、目标函数设计、模型训练过程设计、模型效果的评估与验证、计算性能与模型加速;最后通过多个应用案例帮助读者加强对前面知识点的理解。 第1章  引言 1
    1.1  人工智能概述 2
    1.1.1  人工智能的分类 2
    1.1.2  人工智能的应用 3
    1.2  人工智能与传统机器学习 5
    1.2.1  人工神经网络与生物神经网络 5
    1.2.2  落地的关键因素 6
    1.3  机器学习算法领域发展综述 8
    1.3.1  计算机视觉 9
    1.3.2  自然语言处理 10
    1.3.3  语音识别 11
    1.4  小结 13
    参考文献 13

    第2章  数据理解 16
    2.1  数据的三个基本维度 17
    2.1.1  集中趋势 17
    2.1.2  离散趋势 19
    2.1.3  分布形态 20
    2.2  数据的统计推论的基本方法 22
    2.2.1  数据抽样 22
    2.2.2  参数估计 24
    2.2.3  假设检验 26
    2.3  数据分析 31
    2.3.1  基本理念 31
    2.3.2  体系结构 32
    2.3.3  传统数据分析方法与示例 33
    2.3.4  基于数据挖掘的数据分析方法与示例 35
    2.3.5  工作流程 38
    2.3.6  数据分析技巧 40
    2.3.7  数据可视化 43
    2.4  小结 45
    参考文献 45

    第3章  数据处理与特征 47
    3.1  数据的基本处理 48
    3.1.1  数据预处理 48
    3.1.2  数据清洗中的异常值判定和处理 49
    3.1.3  数据清洗中的缺失值填充 51
    3.2  数据的特征缩放和特征编码 54
    3.2.1  特征缩放 54
    3.2.2  特征编码 57
    3.3  数据降维 58
    3.3.1  基本思想与方法 58
    3.3.2  变量选择 59
    3.3.3  特征提取 61
    3.4  图像的特征分析 68
    3.4.1  图像预处理 68
    3.4.2  传统图像特征提取 74
    3.4.3  指纹识别 77
    3.5  小结 78
    参考文献 79

    第4章  机器学习基础 81
    4.1  统计学习 82
    4.1.1  统计学习概述 82
    4.1.2  一般研发流程 83
    4.2  机器学习算法分类 85
    4.2.1  体系框架 85
    4.2.2  模型的形式 88
    4.3  机器学习的学习规则 90
    4.3.1  误差修正学习 90
    4.3.2  赫布学习规则 91
    4.3.3  最小均方规则 92
    4.3.4  竞争学习规则 93
    4.3.5  其他学习规则 94
    4.4  机器学习的基础应用 95
    4.4.1  基于最小二乘法的回归分析 95
    4.4.2  基于K-Means的聚类分析 98
    4.4.3  基于朴素贝叶斯的分类分析 101
    4.5  小结 103
    参考文献 103

    第5章  模型选择和结构设计 105
    5.1  传统机器学习模型选择 106
    5.1.1  基本原则 106
    5.1.2  经典模型 107
    5.2  经典回归模型的理解和选择 108
    5.2.1  逻辑回归 108
    5.2.2  多项式回归 109
    5.2.3  各类回归模型的简单对比 112
    5.3  经典分类模型的理解和选择 113
    5.3.1  K近邻算法 113
    5.3.2  支持向量机 114
    5.3.3  多层感知器 115
    5.3.4  AdaBoost算法 117
    5.3.5  各类分类算法的简单对比 118
    5.4  经典聚类模型的理解和选择 120
    5.4.1  基于划分的聚类 120
    5.4.2  基于层次的聚类 122
    5.4.3  基于密度的聚类 126
    5.4.4  基于网格的聚类 131
    5.4.5  聚类算法的简单对比 131
    5.5  深度学习模型选择 132
    5.5.1  分类问题模型 132
    5.5.2  聚类问题模型 138
    5.5.3  回归预测模型 139
    5.5.4  各类深度学习模型的简单对比 140
    5.6  深度学习模型结构的设计方向 141
    5.6.1  基于深度的设计 141
    5.6.2  基于升维或降维的设计 144
    5.6.3  基于宽度和多尺度的设计 145
    5.7  模型结构设计中的简单技巧 146
    5.7.1  激活函数的选择 146
    5.7.2  隐藏神经元的估算 147
    5.7.3  卷积核串联使用 148
    5.7.4  利用Dropout提升性能 149
    5.8  小结 150
    参考文献 151

    第6章 目标函数设计 154
    6.1  损失函数 155
    6.1.1  一般简单损失函数 155
    6.1.2  图像分类场景经典损失函数 156
    6.1.3  目标检测中的经典损失函数 158
    6.1.4  图像分割中的经典损失函数 159
    6.1.5  对比场景中的经典损失函数 161
    6.2  风险最小化和设计原则 165
    6.2.1  期望风险、经验风险和结构风险 165
    6.2.2  目标函数的设计原则 166
    6.3  基于梯度下降法的目标函数优化 167
    6.3.1  理论基础 167
    6.3.2  常见的梯度下降法 169
    6.3.3  改进方法 169
    6.4  基于牛顿法的目标求解 173
    6.4.1  基本原理 173
    6.4.2  牛顿法的计算步骤 174
    6.5  小结 175
    参考文献 176

    第7章  模型训练过程设计 178
    7.1  数据选择 179
    7.1.1  数据集筛选 179
    7.1.2  难例挖掘 180
    7.1.3  数据增强 181
    7.2  参数初始化 183
    7.2.1  避免全零初始化 183
    7.2.2  随机初始化 184
    7.3  拟合的验证与判断 185
    7.3.1  过拟合的模型参数 185
    7.3.2  不同算法场景中的欠拟合和过拟合 187
    7.4  学习速率的选择 188
    7.4.1  学习速率的一般观测方法 188
    7.4.2  学习速率与批处理大小的关系 189
    7.5  迁移学习 189
    7.5.1  概念与基本方法 189
    7.5.2  应用示例:基于VGG-16的迁移思路 190
    7.6  分布式训练 191
    7.6.1  数据并行 191
    7.6.2  模型并行 193
    7.7  小结 194
    参考文献 194

    第8章  模型效果的评估与验证 196
    8.1  模型效果评估的一般性指标 197
    8.1.1  分类算法的效果评估 197
    8.1.2  聚类算法的效果评估 201
    8.1.3  回归算法的效果评估 205
    8.1.4  不同应用场景下的效果评估 206
    8.2  交叉验证 208
    8.2.1  基本思想 208
    8.2.2  不同的交叉验证方法 209
    8.3  模型的稳定性分析 210
    8.3.1  计算的稳定性 210
    8.3.2  数据的稳定性 211
    8.3.3  模型性能 212
    8.4  小结 213
    参考文献 213

    第9章  计算性能与模型加速 215
    9.1  计算优化 216
    9.1.1  问题与挑战 216
    9.1.2  设备与推断计算 216
    9.2  性能指标 217
    9.2.1  计算平台的重要指标:算力和带宽 217
    9.2.2  模型的两个重要指标:计算量和访存量 218
    9.3  模型压缩与裁剪 219
    9.3.1  问题背景 219
    9.3.2  基本思路和方法 220
    9.4  小结 221
    参考文献 221

    第10章  应用案例专题 223
    10.1  求解二元一次方程 224
    10.1.1  问题分析 224
    10.1.2  模型设计 225
    10.2  鸢尾花的案例分析 226
    10.2.1  数据说明 226
    10.2.2  数据理解和可视化 227
    10.2.3  数据特征的降维 230
    10.2.4  数据分类 231
    10.2.5  数据聚类 235
    10.3  形体识别 237
    10.3.1  问题定义 237
    10.3.2  应用形式 239
    10.3.3  数据准备与处理 241
    10.3.4  技术方案与模型设计 243
    10.3.5  改进思考 245
    10.4  小结 246
    参考文献 246
  • 内容简介:
    本书主要对算法的原理进行了介绍,并融合大量的应用案例,详细介绍使用机器学习模型的一般方法,帮助读者理解算法原理,学会模型设计。本书首先介绍数据理解、数据的处理与特征,帮助读者认识数据;然后从宏观、系统的角度介绍机器学习算法分类、一般学习规则及机器学习的基础应用;接着根据项目研发的流程,详细介绍了模型选择和结构设计、目标函数设计、模型训练过程设计、模型效果的评估与验证、计算性能与模型加速;最后通过多个应用案例帮助读者加强对前面知识点的理解。
  • 目录:
    第1章  引言 1
    1.1  人工智能概述 2
    1.1.1  人工智能的分类 2
    1.1.2  人工智能的应用 3
    1.2  人工智能与传统机器学习 5
    1.2.1  人工神经网络与生物神经网络 5
    1.2.2  落地的关键因素 6
    1.3  机器学习算法领域发展综述 8
    1.3.1  计算机视觉 9
    1.3.2  自然语言处理 10
    1.3.3  语音识别 11
    1.4  小结 13
    参考文献 13

    第2章  数据理解 16
    2.1  数据的三个基本维度 17
    2.1.1  集中趋势 17
    2.1.2  离散趋势 19
    2.1.3  分布形态 20
    2.2  数据的统计推论的基本方法 22
    2.2.1  数据抽样 22
    2.2.2  参数估计 24
    2.2.3  假设检验 26
    2.3  数据分析 31
    2.3.1  基本理念 31
    2.3.2  体系结构 32
    2.3.3  传统数据分析方法与示例 33
    2.3.4  基于数据挖掘的数据分析方法与示例 35
    2.3.5  工作流程 38
    2.3.6  数据分析技巧 40
    2.3.7  数据可视化 43
    2.4  小结 45
    参考文献 45

    第3章  数据处理与特征 47
    3.1  数据的基本处理 48
    3.1.1  数据预处理 48
    3.1.2  数据清洗中的异常值判定和处理 49
    3.1.3  数据清洗中的缺失值填充 51
    3.2  数据的特征缩放和特征编码 54
    3.2.1  特征缩放 54
    3.2.2  特征编码 57
    3.3  数据降维 58
    3.3.1  基本思想与方法 58
    3.3.2  变量选择 59
    3.3.3  特征提取 61
    3.4  图像的特征分析 68
    3.4.1  图像预处理 68
    3.4.2  传统图像特征提取 74
    3.4.3  指纹识别 77
    3.5  小结 78
    参考文献 79

    第4章  机器学习基础 81
    4.1  统计学习 82
    4.1.1  统计学习概述 82
    4.1.2  一般研发流程 83
    4.2  机器学习算法分类 85
    4.2.1  体系框架 85
    4.2.2  模型的形式 88
    4.3  机器学习的学习规则 90
    4.3.1  误差修正学习 90
    4.3.2  赫布学习规则 91
    4.3.3  最小均方规则 92
    4.3.4  竞争学习规则 93
    4.3.5  其他学习规则 94
    4.4  机器学习的基础应用 95
    4.4.1  基于最小二乘法的回归分析 95
    4.4.2  基于K-Means的聚类分析 98
    4.4.3  基于朴素贝叶斯的分类分析 101
    4.5  小结 103
    参考文献 103

    第5章  模型选择和结构设计 105
    5.1  传统机器学习模型选择 106
    5.1.1  基本原则 106
    5.1.2  经典模型 107
    5.2  经典回归模型的理解和选择 108
    5.2.1  逻辑回归 108
    5.2.2  多项式回归 109
    5.2.3  各类回归模型的简单对比 112
    5.3  经典分类模型的理解和选择 113
    5.3.1  K近邻算法 113
    5.3.2  支持向量机 114
    5.3.3  多层感知器 115
    5.3.4  AdaBoost算法 117
    5.3.5  各类分类算法的简单对比 118
    5.4  经典聚类模型的理解和选择 120
    5.4.1  基于划分的聚类 120
    5.4.2  基于层次的聚类 122
    5.4.3  基于密度的聚类 126
    5.4.4  基于网格的聚类 131
    5.4.5  聚类算法的简单对比 131
    5.5  深度学习模型选择 132
    5.5.1  分类问题模型 132
    5.5.2  聚类问题模型 138
    5.5.3  回归预测模型 139
    5.5.4  各类深度学习模型的简单对比 140
    5.6  深度学习模型结构的设计方向 141
    5.6.1  基于深度的设计 141
    5.6.2  基于升维或降维的设计 144
    5.6.3  基于宽度和多尺度的设计 145
    5.7  模型结构设计中的简单技巧 146
    5.7.1  激活函数的选择 146
    5.7.2  隐藏神经元的估算 147
    5.7.3  卷积核串联使用 148
    5.7.4  利用Dropout提升性能 149
    5.8  小结 150
    参考文献 151

    第6章 目标函数设计 154
    6.1  损失函数 155
    6.1.1  一般简单损失函数 155
    6.1.2  图像分类场景经典损失函数 156
    6.1.3  目标检测中的经典损失函数 158
    6.1.4  图像分割中的经典损失函数 159
    6.1.5  对比场景中的经典损失函数 161
    6.2  风险最小化和设计原则 165
    6.2.1  期望风险、经验风险和结构风险 165
    6.2.2  目标函数的设计原则 166
    6.3  基于梯度下降法的目标函数优化 167
    6.3.1  理论基础 167
    6.3.2  常见的梯度下降法 169
    6.3.3  改进方法 169
    6.4  基于牛顿法的目标求解 173
    6.4.1  基本原理 173
    6.4.2  牛顿法的计算步骤 174
    6.5  小结 175
    参考文献 176

    第7章  模型训练过程设计 178
    7.1  数据选择 179
    7.1.1  数据集筛选 179
    7.1.2  难例挖掘 180
    7.1.3  数据增强 181
    7.2  参数初始化 183
    7.2.1  避免全零初始化 183
    7.2.2  随机初始化 184
    7.3  拟合的验证与判断 185
    7.3.1  过拟合的模型参数 185
    7.3.2  不同算法场景中的欠拟合和过拟合 187
    7.4  学习速率的选择 188
    7.4.1  学习速率的一般观测方法 188
    7.4.2  学习速率与批处理大小的关系 189
    7.5  迁移学习 189
    7.5.1  概念与基本方法 189
    7.5.2  应用示例:基于VGG-16的迁移思路 190
    7.6  分布式训练 191
    7.6.1  数据并行 191
    7.6.2  模型并行 193
    7.7  小结 194
    参考文献 194

    第8章  模型效果的评估与验证 196
    8.1  模型效果评估的一般性指标 197
    8.1.1  分类算法的效果评估 197
    8.1.2  聚类算法的效果评估 201
    8.1.3  回归算法的效果评估 205
    8.1.4  不同应用场景下的效果评估 206
    8.2  交叉验证 208
    8.2.1  基本思想 208
    8.2.2  不同的交叉验证方法 209
    8.3  模型的稳定性分析 210
    8.3.1  计算的稳定性 210
    8.3.2  数据的稳定性 211
    8.3.3  模型性能 212
    8.4  小结 213
    参考文献 213

    第9章  计算性能与模型加速 215
    9.1  计算优化 216
    9.1.1  问题与挑战 216
    9.1.2  设备与推断计算 216
    9.2  性能指标 217
    9.2.1  计算平台的重要指标:算力和带宽 217
    9.2.2  模型的两个重要指标:计算量和访存量 218
    9.3  模型压缩与裁剪 219
    9.3.1  问题背景 219
    9.3.2  基本思路和方法 220
    9.4  小结 221
    参考文献 221

    第10章  应用案例专题 223
    10.1  求解二元一次方程 224
    10.1.1  问题分析 224
    10.1.2  模型设计 225
    10.2  鸢尾花的案例分析 226
    10.2.1  数据说明 226
    10.2.2  数据理解和可视化 227
    10.2.3  数据特征的降维 230
    10.2.4  数据分类 231
    10.2.5  数据聚类 235
    10.3  形体识别 237
    10.3.1  问题定义 237
    10.3.2  应用形式 239
    10.3.3  数据准备与处理 241
    10.3.4  技术方案与模型设计 243
    10.3.5  改进思考 245
    10.4  小结 246
    参考文献 246
查看详情
12
相关图书 / 更多
突围算法:机器学习算法应用
突围:做新时代的商业领跑者
叶荣祖、乔阳、魏凤荣 著
突围算法:机器学习算法应用
突围新媒体运营
汉震中
突围算法:机器学习算法应用
突围 1927—1934
魏子任 编
突围算法:机器学习算法应用
突围
陈步松 著
突围算法:机器学习算法应用
突围与超越:跨学科视角的教育管理学
刘春 著
突围算法:机器学习算法应用
突围异托邦:华裔美国文学的话语范式与文化认同研究
寇才军 著
突围算法:机器学习算法应用
突围:剧本(靳东、闫妮、黄志忠、陈晓、秦岚主演热播剧《突围》剧本,六十集无删节版,补足电视剧残缺剧情,附送12张全彩电视剧照。)
周梅森 孙馨岳
突围算法:机器学习算法应用
突围:88位基金经理的投资原则
金融界
突围算法:机器学习算法应用
突围
还有一分贝
突围算法:机器学习算法应用
突围原生家庭:如何在过去的伤痛中重建自我
斯蒂芬妮.斯蒂尔 著;胡静 译
突围算法:机器学习算法应用
突围破局:中国汽车消费倍增战略(清华汇智文库)
童泽林、郑振彪、王鑫鑫、陈宇丽 著
突围算法:机器学习算法应用
突围——中国经济
亚布力中国企业家论坛