无人机侦察情报处理技术

无人机侦察情报处理技术
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者:
出版社: 科学出版社
2021-10
版次: 1
ISBN: 9787030694133
定价: 129.00
装帧: 平装
开本: 16开
纸张: 胶版纸
页数: 205页
分类: 工程技术
  • 《无人机侦察情报处理技术》介绍了无人机侦察情报处理的三部分内容,分别为图像融合、目标识别以及目标跟踪。图像融合介绍了红外和可见光的快速配准技术、结合变换域与空间域的灰度级融合技术和基于IHS变换与目标增强的彩色级融合技术。对于SAR图像的自动目标识别,说明了基于自适应筛选快速CFAR算法的目标检测、基于Krawtchouk矩特征的目标鉴别以及基于卷积神经网络和深度学习的目标识别。针对长时目标跟踪,阐述了基于相关滤波的自适应特征融合与目标重检测技术。 目录 

    前言 

    图像融合篇 

    第1章 图像融合概述 3 

    1.1 图像融合简介 3 

    1.2 红外与可见光图像配准及融合研究现状 4 

    1.2.1 图像配准技术研究现状 4 

    1.2.2 图像融合技术研究现状 5 

    1.3 成像特性分析 6 

    1.3.1 红外成像特性 6 

    1.3.2 可见光成像特性 7 

    1.3.3 红外与可见光图像特性对比 7 

    1.4 图像配准基本理论 8 

    1.4.1 空间变换模型 8 

    1.4.2 图像配准方法 10 

    1.4.3 配准效果评价标准 12 

    1.5 图像融合基本理论 13 

    1.5.1 图像融合层次划分 13 

    1.5.2 图像融合方法 14 

    1.5.3 融合效果评价标准 20 

    1.6 本篇主要研究内容 23 

    第2章 基于形态学边缘检测与改进ORB的图像配准 25 

    2.1 引言 25 

    2.2 算法框架 26 

    2.2.1 形态学边缘检测 26 

    2.2.2 改进的ORB算法 28 

    2.2.3 特征点提取、描述与匹配 28 

    2.3 基于GMS与PROSAC的双重误匹配剔除 31 

    2.3.1 基于GMS的误匹配剔除 31 

    2.3.2 基于PROSAC的二次误匹配剔除 33 

    2.4 仿真实验与结果分析 33 

    2.4.1 实验仿真结果 33 

    2.4.2 配准结果分析 36 

    2.5 本章小结 37 

    第3章 基于NSDTCT与自适应分块的图像融合 38 

    3.1 引言 38 

    3.2 相关理论 39 

    3.2.1 NSDTCT 39 

    3.2.2 果蝇优化算法 40 

    3.3 融合步骤与策略 41 

    3.3.1 融合方案 41 

    3.3.2 基于FOA算法优化的自适应分块 42 

    3.3.3 标签图的产生过程 44 

    3.3.4 高频分量融合策略 46 

    3.4 仿真实验与结果分析 47 

    3.4.1 实验参数设置 47 

    3.4.2 仿真结果分析 48 

    3.5 本章小结 52 

    第4章 基于IHS变换与目标增强的图像融合 53 

    4.1 引言 53 

    4.2 融合步骤 54 

    4.2.1 融合方案 54 

    4.2.2 IHS色彩空间变换 54 

    4.2.3 基于RPCA的目标增强 55 

    4.3 仿真实验与结果分析 57 

    4.3.1 仿真条件 57 

    4.3.2 实验结果及分析 57 

    4.4 本章小结 59 

    本篇小结 60 

    目标识别篇 

    第5章 SAR图像自动目标识别概述 63 

    5.1 SAR图像自动目标识别简介 63 

    5.2 SAR图像自动目标识别研究现状 64 

    5.2.1 目标检测 64 

    5.2.2 目标鉴别 65 

    5.2.3 目标识别 66 

    5.3 本篇主要研究内容 67 

    第6章 基于自适应筛选快速CFAR算法的目标检测 69 

    6.1 引言 69 

    6.2 双参数CFAR算法在多目标环境下的性能研究 69 

    6.2.1 双参数CFAR算法 69 

    6.2.2 参考窗内包含目标像素的影响理论推导 71 

    6.2.3 参考窗内包含目标像素的影响仿真研究 71 

    6.3 自适应筛选快速CFAR算法流程 73 

    6.3.1 参考窗口像素的自适应筛选 73 

    6.3.2 自适应筛选仿真实验 75 

    6.3.3 区域阈值的可行性分析 77 

    6.4 实验验证 78 

    6.4.1 实验设置 78 

    6.4.2 实验结果及分析 78 

    6.5 本章小结 80 

    第7章 基于Krawtchouk矩特征的目标鉴别 81 

    7.1 引言 81 

    7.2 SAR图像的Krawtchouk矩特征提取 81 

    7.2.1 Krawtchouk矩 81 

    7.2.2 基于最大信息系数的特征选择 82 

    7.3 代价敏感神经网络分类器设计 83 

    7.3.1 多隐层神经网络 83 

    7.3.2 非均等代价函数 84 

    7.4 实验验证 84 

    7.4.1 实验设置 84 

    7.4.2 评价指标 85 

    7.4.3 实验结果及分析 86 

    7.5 本章小结 90 

    第8章 基于卷积神经网络和深度学习的目标识别 91 

    8.1 引言 91 

    8.2 卷积神经网络目标识别流程 91 

    8.3 改进的特征提取网络结构 92 

    8.3.1 特征提取网络的结构 92 

    8.3.2 卷积神经网络对噪声的抑制 93 

    8.4 优化的Softmax分类器 94 

    8.4.1 正则化项 94 

    8.4.2 dropout原理 95 

    8.5 卷积神经网络目标识别实验验证 96 

    8.5.1 实验设置 96 

    8.5.2 实验结果及分析 98 

    8.6 基于深度学习的目标检测框架 101 

    8.6.1 Faster-RCNN目标检测框架 101 

    8.6.2 SSD目标检测框架 102 

    8.7 针对SAR图像的检测框架研究 103 

    8.7.1 预训练模型 103 

    8.7.2 零均值规整化 103 

    8.8 深度学习目标检测实验验证 104 

    8.8.1 实验设置 104 

    8.8.2 实验结果及分析 105 

    8.9 本章小结 109 

    本篇小结 110 

    目标跟踪篇 

    第9章 目标跟踪概述 113 

    9.1 目标跟踪简介 113 

    9.2 目标跟踪研究现状 114 

    9.2.1 生成式跟踪方法 114 

    9.2.2 判别式跟踪方法 118 

    9.3 本篇主要研究内容 121 

    第10章 相关滤波目标跟踪基础理论 123 

    10.1 引言 123 

    10.2 背景感知相关滤波目标跟踪方法 123 

    10.2.1 标准相关滤波目标跟踪方法 123 

    10.2.2 背景感知相关滤波器 124 

    10.2.3 尺度估计 126 

    10.3 进一步改进优化方向 127 

    10.4 实验数据与评价指标 128 

    10.4.1 数据集 128 

    10.4.2 评价指标 130 

    10.5 本章小结 132 

    第11章 时空感知相关滤波器 133 

    11.1 引言 133 

    11.2 时空感知相关滤波器模板训练 133 

    11.3 时空感知相关滤波器方法步骤 136 

    11.4 时空感知相关滤波器实验与分析 137 

    11.4.1 对比实验设置 137 

    11.4.2 数据集 137 

    11.4.3 实验具体参数设置 138 

    11.4.4 实验结果及分析 138 

    11.5 特征选择 146 

    11.5.1 人工特征 146 

    11.5.2 深度特征 148 

    11.5.3 自适应特征选择 149 

    11.6 自适应特征选择实验与分析 151 

    11.6.1 对比实验设置 151 

    11.6.2 测试数据集 151 

    11.6.3 实验具体参数设置 151 

    11.6.4 实验结果及分析 151 

    11.7 本章小结 155 

    第12章 长时目标跟踪 157 

    12.1 引言 157 

    12.2 EdgeBoxes候选区域提取 158 

    12.3 结构化支持向量机 160 

    12.4 自适应目标重检测 161 

    12.5 自适应目标重检测方法步骤 162 

    12.6 自适应目标重检测实验与分析 163 

    12.6.1 对比实验设置 163 

    12.6.2 数据集 164 

    12.6.3 实验具体参数设置 164 

    12.6.4 实验分析 164 

    12.7 长时目标跟踪框架及目标尺度估计 166 

    12.8 长时目标跟踪方法步骤 167 

    12.9 长时目标跟踪实验与分析 168 

    12.9.1 实验数据 168 

    12.9.2 对比实验设置 168 

    12.9.3 实验设置 169 

    12.9.4 定量分析 169 

    12.9.5 定性分析 189 

    12.10 本章小结 192 

    本篇小结 194 

    参考文献 195 

    彩图
  • 内容简介:
    《无人机侦察情报处理技术》介绍了无人机侦察情报处理的三部分内容,分别为图像融合、目标识别以及目标跟踪。图像融合介绍了红外和可见光的快速配准技术、结合变换域与空间域的灰度级融合技术和基于IHS变换与目标增强的彩色级融合技术。对于SAR图像的自动目标识别,说明了基于自适应筛选快速CFAR算法的目标检测、基于Krawtchouk矩特征的目标鉴别以及基于卷积神经网络和深度学习的目标识别。针对长时目标跟踪,阐述了基于相关滤波的自适应特征融合与目标重检测技术。
  • 目录:
    目录 

    前言 

    图像融合篇 

    第1章 图像融合概述 3 

    1.1 图像融合简介 3 

    1.2 红外与可见光图像配准及融合研究现状 4 

    1.2.1 图像配准技术研究现状 4 

    1.2.2 图像融合技术研究现状 5 

    1.3 成像特性分析 6 

    1.3.1 红外成像特性 6 

    1.3.2 可见光成像特性 7 

    1.3.3 红外与可见光图像特性对比 7 

    1.4 图像配准基本理论 8 

    1.4.1 空间变换模型 8 

    1.4.2 图像配准方法 10 

    1.4.3 配准效果评价标准 12 

    1.5 图像融合基本理论 13 

    1.5.1 图像融合层次划分 13 

    1.5.2 图像融合方法 14 

    1.5.3 融合效果评价标准 20 

    1.6 本篇主要研究内容 23 

    第2章 基于形态学边缘检测与改进ORB的图像配准 25 

    2.1 引言 25 

    2.2 算法框架 26 

    2.2.1 形态学边缘检测 26 

    2.2.2 改进的ORB算法 28 

    2.2.3 特征点提取、描述与匹配 28 

    2.3 基于GMS与PROSAC的双重误匹配剔除 31 

    2.3.1 基于GMS的误匹配剔除 31 

    2.3.2 基于PROSAC的二次误匹配剔除 33 

    2.4 仿真实验与结果分析 33 

    2.4.1 实验仿真结果 33 

    2.4.2 配准结果分析 36 

    2.5 本章小结 37 

    第3章 基于NSDTCT与自适应分块的图像融合 38 

    3.1 引言 38 

    3.2 相关理论 39 

    3.2.1 NSDTCT 39 

    3.2.2 果蝇优化算法 40 

    3.3 融合步骤与策略 41 

    3.3.1 融合方案 41 

    3.3.2 基于FOA算法优化的自适应分块 42 

    3.3.3 标签图的产生过程 44 

    3.3.4 高频分量融合策略 46 

    3.4 仿真实验与结果分析 47 

    3.4.1 实验参数设置 47 

    3.4.2 仿真结果分析 48 

    3.5 本章小结 52 

    第4章 基于IHS变换与目标增强的图像融合 53 

    4.1 引言 53 

    4.2 融合步骤 54 

    4.2.1 融合方案 54 

    4.2.2 IHS色彩空间变换 54 

    4.2.3 基于RPCA的目标增强 55 

    4.3 仿真实验与结果分析 57 

    4.3.1 仿真条件 57 

    4.3.2 实验结果及分析 57 

    4.4 本章小结 59 

    本篇小结 60 

    目标识别篇 

    第5章 SAR图像自动目标识别概述 63 

    5.1 SAR图像自动目标识别简介 63 

    5.2 SAR图像自动目标识别研究现状 64 

    5.2.1 目标检测 64 

    5.2.2 目标鉴别 65 

    5.2.3 目标识别 66 

    5.3 本篇主要研究内容 67 

    第6章 基于自适应筛选快速CFAR算法的目标检测 69 

    6.1 引言 69 

    6.2 双参数CFAR算法在多目标环境下的性能研究 69 

    6.2.1 双参数CFAR算法 69 

    6.2.2 参考窗内包含目标像素的影响理论推导 71 

    6.2.3 参考窗内包含目标像素的影响仿真研究 71 

    6.3 自适应筛选快速CFAR算法流程 73 

    6.3.1 参考窗口像素的自适应筛选 73 

    6.3.2 自适应筛选仿真实验 75 

    6.3.3 区域阈值的可行性分析 77 

    6.4 实验验证 78 

    6.4.1 实验设置 78 

    6.4.2 实验结果及分析 78 

    6.5 本章小结 80 

    第7章 基于Krawtchouk矩特征的目标鉴别 81 

    7.1 引言 81 

    7.2 SAR图像的Krawtchouk矩特征提取 81 

    7.2.1 Krawtchouk矩 81 

    7.2.2 基于最大信息系数的特征选择 82 

    7.3 代价敏感神经网络分类器设计 83 

    7.3.1 多隐层神经网络 83 

    7.3.2 非均等代价函数 84 

    7.4 实验验证 84 

    7.4.1 实验设置 84 

    7.4.2 评价指标 85 

    7.4.3 实验结果及分析 86 

    7.5 本章小结 90 

    第8章 基于卷积神经网络和深度学习的目标识别 91 

    8.1 引言 91 

    8.2 卷积神经网络目标识别流程 91 

    8.3 改进的特征提取网络结构 92 

    8.3.1 特征提取网络的结构 92 

    8.3.2 卷积神经网络对噪声的抑制 93 

    8.4 优化的Softmax分类器 94 

    8.4.1 正则化项 94 

    8.4.2 dropout原理 95 

    8.5 卷积神经网络目标识别实验验证 96 

    8.5.1 实验设置 96 

    8.5.2 实验结果及分析 98 

    8.6 基于深度学习的目标检测框架 101 

    8.6.1 Faster-RCNN目标检测框架 101 

    8.6.2 SSD目标检测框架 102 

    8.7 针对SAR图像的检测框架研究 103 

    8.7.1 预训练模型 103 

    8.7.2 零均值规整化 103 

    8.8 深度学习目标检测实验验证 104 

    8.8.1 实验设置 104 

    8.8.2 实验结果及分析 105 

    8.9 本章小结 109 

    本篇小结 110 

    目标跟踪篇 

    第9章 目标跟踪概述 113 

    9.1 目标跟踪简介 113 

    9.2 目标跟踪研究现状 114 

    9.2.1 生成式跟踪方法 114 

    9.2.2 判别式跟踪方法 118 

    9.3 本篇主要研究内容 121 

    第10章 相关滤波目标跟踪基础理论 123 

    10.1 引言 123 

    10.2 背景感知相关滤波目标跟踪方法 123 

    10.2.1 标准相关滤波目标跟踪方法 123 

    10.2.2 背景感知相关滤波器 124 

    10.2.3 尺度估计 126 

    10.3 进一步改进优化方向 127 

    10.4 实验数据与评价指标 128 

    10.4.1 数据集 128 

    10.4.2 评价指标 130 

    10.5 本章小结 132 

    第11章 时空感知相关滤波器 133 

    11.1 引言 133 

    11.2 时空感知相关滤波器模板训练 133 

    11.3 时空感知相关滤波器方法步骤 136 

    11.4 时空感知相关滤波器实验与分析 137 

    11.4.1 对比实验设置 137 

    11.4.2 数据集 137 

    11.4.3 实验具体参数设置 138 

    11.4.4 实验结果及分析 138 

    11.5 特征选择 146 

    11.5.1 人工特征 146 

    11.5.2 深度特征 148 

    11.5.3 自适应特征选择 149 

    11.6 自适应特征选择实验与分析 151 

    11.6.1 对比实验设置 151 

    11.6.2 测试数据集 151 

    11.6.3 实验具体参数设置 151 

    11.6.4 实验结果及分析 151 

    11.7 本章小结 155 

    第12章 长时目标跟踪 157 

    12.1 引言 157 

    12.2 EdgeBoxes候选区域提取 158 

    12.3 结构化支持向量机 160 

    12.4 自适应目标重检测 161 

    12.5 自适应目标重检测方法步骤 162 

    12.6 自适应目标重检测实验与分析 163 

    12.6.1 对比实验设置 163 

    12.6.2 数据集 164 

    12.6.3 实验具体参数设置 164 

    12.6.4 实验分析 164 

    12.7 长时目标跟踪框架及目标尺度估计 166 

    12.8 长时目标跟踪方法步骤 167 

    12.9 长时目标跟踪实验与分析 168 

    12.9.1 实验数据 168 

    12.9.2 对比实验设置 168 

    12.9.3 实验设置 169 

    12.9.4 定量分析 169 

    12.9.5 定性分析 189 

    12.10 本章小结 192 

    本篇小结 194 

    参考文献 195 

    彩图
查看详情
相关图书 / 更多
无人机侦察情报处理技术
无人机导航与控制
唐大全 鹿珂珂 编著
无人机侦察情报处理技术
无人机系统任务载荷技术
丁全心
无人机侦察情报处理技术
无人机检测与维护(初级)
北京优云智翔航空科技有限公司 组织编写
无人机侦察情报处理技术
无人机生产设计与检测维修
张敏华;许英杰;贺建锋;王朋飞;徐勇
无人机侦察情报处理技术
无人机组装与调试
杨富程;潘天宇;聂祥樊;胡强;李莉
无人机侦察情报处理技术
无人机驾驶(高级)
北京优云智翔航空科技有限公司
无人机侦察情报处理技术
无人机动力系统技术
王永明、徐悦、周人治 编
无人机侦察情报处理技术
无人机操控技术(梁晓明)
梁晓明 主编;孙玉军 副主编;林刚
无人机侦察情报处理技术
无人机航拍技术
李长海;张循利;高坤;陈健
无人机侦察情报处理技术
无人机系统关键技术
昂海松
无人机侦察情报处理技术
无人及系统作战运用
王进国
无人机侦察情报处理技术
无人机系统发展史
李志
您可能感兴趣 / 更多
无人机侦察情报处理技术
铁磁材料缺陷的磁记忆检测技术
王长龙 著
无人机侦察情报处理技术
无人机飞行控制技术——小型共轴无人直升机控制系统
王长龙
无人机侦察情报处理技术
典型金属尾矿绿色化技术研究与案例分析
王长龙;魏浩杰;王肇嘉;杨飞华
无人机侦察情报处理技术
新型工业固废基混凝土
王长龙 著
无人机侦察情报处理技术
脉冲涡流缺陷检测技术
王长龙 著
无人机侦察情报处理技术
铁尾矿综合利用基础研究
王长龙、倪文、杨飞华、郑永超 著
无人机侦察情报处理技术
漏磁检测的缺陷可视化技术
王长龙、陈自力、马晓琳 著