工程中的振动同步与控制同步(英文版)

工程中的振动同步与控制同步(英文版)
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者:
出版社: 科学出版社
2009-10
版次: 1
ISBN: 9787030257772
定价: 68.00
装帧: 精装
开本: 16开
纸张: 胶版纸
页数: 266页
字数: 335千字
正文语种: 简体中文,英语
分类: 工程技术
4人买过
  • 《工程中的振动同步与控制同步(英文版)》是在完成“关于机械系统控制同步理论及其应用的研究”、“多机机械系统广义同步与定速比传动智能控制的理论及其应用的研究”等国家自然科学基金项目及其他相关科研项目的基础上,撰写的一部专著。书中以非线性动力学理论和现代控制理论及智能控制理论为基础,研究了双机或多机机械系统的振动同步、控制同步和复合同步,还研究了机械系统定速比控制问题。书中较详细地研究了实现振动同步、控制同步和复合同步的基本理论与方法及具体措施,介绍了作者长期从事这一课题研究的实际经验,在讲述理论与方法的过程中,举出了若干工程应用实例。
    《工程中的振动同步与控制同步(英文版)》可供大专院校师生阅读与参考,还可供从事机械工程、控制工程与动力学研究与设计的科技人员参考使用。 IntroductiontotheFirstAuthor
    Preface
    Chapter1DevelopmentoftheTheoryandTechnologyofVibratorySynchronizationandControlledSynchronization
    1.1Synchronizationphenomenaandproblemsinthenaturalworldandengineering
    1.2Developmentsoftheoryandtechnologyofvibratorysynchronization
    1.3Developmentsofcontrolledsynchronizationtheoryandtechnology
    1.4Developmentoftheoryandtechnologyofcompositesynchronization
    1.5Developmentoftheoryandtechnologyoffixedspeedratiocontrol
    1.6Prospects

    Chapter2VibratorySynchronizationofPlaneMotionofSelfSynchronousVibratingMachineswithDual-motors
    2.1Introduction
    2.2Synchronizationtheoryofplanemotionselfsynchronousvibratingmachineswithsinglemass
    2.2.1Twomotionstatesandorbitsofselfsynchronousvibratingmachineswithtwoexeiters
    2.2.2Torqueequilibriumequationsofthetwoshaftsinaselfsynchronousvibratingmachineofplanemotion
    2.2.3Synchronizationconditionofthetwoexcitersinavibratingmachineofplanemotion
    2.2.4Stabilityconditionsofsynchronousoperation
    2.2.5AnalYsisofthefactorsinfluencingtheconditionsofimplementingsynchronizationandstability
    2.2.6Experimentalresultsforthevibratingmachinesofplanemotion
    2.3Synchronizationtheoryofaplanemotionselfsynchronousvibratingmachinewithdualmasses
    2.3.1Motionequationanditssolutionofaplanemotionselfsynchronousvibratingmachinewithdualmasses
    2.3.2Equationsofmotionofexciters1and2
    2.3.3Synchronizationconditionofselfsynchronousvibratingmachineswithdualmasses
    2.3.4Stabilityconditionsofsynchronousstates
    2.3.5Someresultsoftheexperiments
    2.4Theoryofsynchronizationforcentroidrotationvibratingmachineswithtwoexciters
    2.4.1Equationsofmotionandtheirresolutions
    2.4.2SynchronizationconditionobtainedbyHamiltonianprinciple
    2.4.3Stabilityconditionofsynchronization
    2.4.4Vibration-orientedangleflofthemasscenterandorbitofthemachinebody
    2.4.5Experimentalresultsanddiscussions
    2.5Timesfrequencysynchronizationofnonlinearselfsynchronousvibratingmachines
    2.5.1Conditionoftimesfrequencysynchronizationofnonlinearselfsynchronousvibratingmachines
    2.5.2Stabilityconditionoftimesfrequencysynchronizationfornonlinearvibratingmachines
    2.6Conclusions

    Chapter3VibratorySynchronizationofSpatialMotionSelfSynchronousVibratingMachines
    3.1Introduction
    3.2Synchronizationconditionandstabilityconditionofsynchronousstatesofspatialmotionsinglemassselfsynchronousvibratingmachinery
    3.2.1Motionequationsofvibratingsystemandthesolution
    3.2.2Conditionofimplementingsynchronization
    3.2.3Twosynchronousstatesandthestabilitycondition
    3.3Synchronizationofdual-massselfsynchronousvibratingmachinesofspatialmotion
    3.4Experimentalresultsandtheanalysis
    3.4.1Experimentsofsynchronizationwhentwomotorsarepoweredon
    3.4.2Experimentsofsynchronizationwhenonemotorispoweredoff
    3.4.3Experimentsforstabilityofthetwosynchronousstates
    3.4.4Experimentsforcontrollingthevibration-orientedangleofselfsynchronousvibratingmachines

    Chapter4VibratorySynchronizationTransmissionandItsApplications
    4.1Introduction
    4.2Motionequationandsteadystateresponses
    4.3Synchronizationcriterionandstabilitycriterion
    4.3.1Synchronizationcriterionofvibratorysynchronizationtransmission
    4.3.2Twosynchronousstatesandstabilitycriterionsof△vand△v2
    4.3.3Discussionsaboutsomespecialcases
    4.4Criterionandstabilityofvibratorysynchronizationtransmissioninsomespecificconditions
    4.4.1Criterionofvibratorysynchronizationtransmission
    4.4.2Stabilitycriterionofsynchronousstate
    4.5Experimentalresultsanddiscussions
    4.6Conclusions

    Chapter5SelfSynchronizationofDualMotorswithElectromechanicalCoupling123
    5.1Electromechanicalcouplingmathematicalmodelofadual-shaftinertialvibratingmachine
    5.2Performanceofelectromechanicalcouplingselfsynchronizationofaninertialvibratingmachinewithtwoshafts
    5.2.1Synchronizationofstartingprocessofthesystemunderanidealcondition
    5.2.2Synchronousprocessofstartingwithinitialphasedifferencesbetweenthetwoeccentrics
    5.2.3Synchronousstartingprocessofthevibratingsystemwithasmallperformancedifferencebetweenthetwomotors
    5.2.4Transientprocessofsynchronizationwithspeeddisturbanceorphasedisturbance
    5.3Transientprocessofvibratorysynchronizationtransmission
    5.4Electromechanicalcouplingselfsynchronouscharacteristicsofelasticlinkvibratingmachines
    5.4.1Electromechanicalcouplingmathematicalmodelofthesystem
    5.4.2Start-uptransientsynchronousprocessofthesystemwithaninitialphasedifference
    5.4.3Transientprocessofthesystemwithaperformancedifferencebetweenthetwomotors
    5.4.4Transientprocessofselfsynchronizationofthesystemwithspeeddisturbance
    5.5Electromechanicalcouplinganalysisofsynchronizationofelectricvibratingmachinewithtwoexcitingheaders
    5.5.1Equationsofmotion
    5.5.2Selfsynchronouscharacteristicsoftheelectromechanicalcoupling...

    Chapter6ControlledSynchronizationofMulti-motorMechanicalSystemsUsingTraditionalMethods
    6.1Introduction
    6.2Methodsfordetectionofmotorspeedandphaseinmechanicalsystemswithmulti-motordrives
    6.2.1Synchronousmeasurementofrotationalvelocitiesformultiplemotorsinmechanicalsystems
    6.2.2Determinationofrotationaldirection
    6.2.3Phasemeasurement
    6.3ControlledsynchronizationofmechanicalsystemswithmultiplemotorsbyPID
    6.3.1DesignmethodsofaPIDcontroller
    6.3.2DesignofPIDcontrolforvelocitysynchronizationofmechanicalsystemswithmulti-motordrives
    6.4Slidingmodevariablestructurecontrol
    6.5Modelreferenceadaptivecontrol
    6.5.1Mathematicalmodelofcontrolledobjectandreferencemodel
    6.5.2Designofanadjustablecontroller
    6.5.3Developmentoftheequivalenterrorsystem
    6.5.4Adaptivelaws
    6.6Speedsensorlessfield-orientedcontrolofsynchronizationofmechanicalsystemswithmulti-motordrives
    6.6.1Adaptiveidentificationmodelsofrotorspeedandmagneticlinkageofaninductionmotor
    6.6.2Speedsensorlesscontrolofinductionmotors
    6.6.3Controlledsynchronizationofmechanicalsystemswithmulti-motordrives
    6.7Conclusions

    Chapter7IntelligentControlledSynchronizationsofMechanicalSystemswithMulti-motorDrives
    7.1Introduction
    7.1.1Developmentofintelligentcontrol
    7.1.2Featuresofintelligentcontrolobjects
    7.1.3Strategiesofintelligentcontrol
    7.2Self-organizingandself-earningfuzzycontrolofamechanicalsystemwithdualmotors
    7.2.1Self-organizingfuzzycontroloftwo-motortrackingsynchronization
    7.2.2FuzzymodelofanACmotor
    7.2.3FuzzymodelofanACmotorpoweredwithatransducer
    7.2.4Designofthefuzzycontroller
    7.2.5Experimentsoffuzzycontrolforsynchronizationtracking
    7.3Fuzzymonitoringcontrolofphasedifferenceforavibratingmachinewithdual-motordrivesrotatinginthesamedirection
    7.3.1Mechanicalmodelofavibratingsystemwithdual-motordrives
    7.3.2Speedsynchronizationcontrolofthedualmotors
    7.3.3Fuzzymonitoringcontrolofphasesynchronizationofthetwoeccentricrotors
    7.3.4Phasesynchronizationcontrolandsimulationresultsofthevibratingsystemwithdual-motordrives
    7.4Conclusions

    Chapter8CompositeSynchronizationofVibratingMachineswithFourMotors
    8.1Mechanicalmodelofavibratingsystemwithfourmotors
    8.1.1Mechanicalmodelofsystem
    8.1.2Conditionsofcompositesynchronizationoffoureccentricrotors
    8.2Fuzzycontrolofthephasedifference
    8.2.1Neuralnetworksimulator
    8.2.2Fuzzycontrolforphasetracking
    8.2.3Controlsystemforphasesynchronoustracking
    8.3Simulationresults
    8.4Conclusions

    Chapter9FixedSpeedRatioControlofTwo-motorMechanicalSystems
    9.1Modelofthefixedspeedratiotrackingcontrolsystem
    9.2Designofacompositevariablestructurecontrollerforfixedspeedratiocontrol
    9.3Computercontrolsystemofthefixedspeedratiocontrol
    9.4Speedmeasurementoftherotor
    9.4.1Principleofspeedmeasurement
    9.4.2Hardwareofthespeedmeasurementsystem
    9.5Softwaredesignofthefixedspeedratiocontrolsystem
    9.6Simulationsandexperiments
    9.6.1Resultsofsimulations
    9.6.2Experimentalresultsanddiscussion
    References
  • 内容简介:
    《工程中的振动同步与控制同步(英文版)》是在完成“关于机械系统控制同步理论及其应用的研究”、“多机机械系统广义同步与定速比传动智能控制的理论及其应用的研究”等国家自然科学基金项目及其他相关科研项目的基础上,撰写的一部专著。书中以非线性动力学理论和现代控制理论及智能控制理论为基础,研究了双机或多机机械系统的振动同步、控制同步和复合同步,还研究了机械系统定速比控制问题。书中较详细地研究了实现振动同步、控制同步和复合同步的基本理论与方法及具体措施,介绍了作者长期从事这一课题研究的实际经验,在讲述理论与方法的过程中,举出了若干工程应用实例。
    《工程中的振动同步与控制同步(英文版)》可供大专院校师生阅读与参考,还可供从事机械工程、控制工程与动力学研究与设计的科技人员参考使用。
  • 目录:
    IntroductiontotheFirstAuthor
    Preface
    Chapter1DevelopmentoftheTheoryandTechnologyofVibratorySynchronizationandControlledSynchronization
    1.1Synchronizationphenomenaandproblemsinthenaturalworldandengineering
    1.2Developmentsoftheoryandtechnologyofvibratorysynchronization
    1.3Developmentsofcontrolledsynchronizationtheoryandtechnology
    1.4Developmentoftheoryandtechnologyofcompositesynchronization
    1.5Developmentoftheoryandtechnologyoffixedspeedratiocontrol
    1.6Prospects

    Chapter2VibratorySynchronizationofPlaneMotionofSelfSynchronousVibratingMachineswithDual-motors
    2.1Introduction
    2.2Synchronizationtheoryofplanemotionselfsynchronousvibratingmachineswithsinglemass
    2.2.1Twomotionstatesandorbitsofselfsynchronousvibratingmachineswithtwoexeiters
    2.2.2Torqueequilibriumequationsofthetwoshaftsinaselfsynchronousvibratingmachineofplanemotion
    2.2.3Synchronizationconditionofthetwoexcitersinavibratingmachineofplanemotion
    2.2.4Stabilityconditionsofsynchronousoperation
    2.2.5AnalYsisofthefactorsinfluencingtheconditionsofimplementingsynchronizationandstability
    2.2.6Experimentalresultsforthevibratingmachinesofplanemotion
    2.3Synchronizationtheoryofaplanemotionselfsynchronousvibratingmachinewithdualmasses
    2.3.1Motionequationanditssolutionofaplanemotionselfsynchronousvibratingmachinewithdualmasses
    2.3.2Equationsofmotionofexciters1and2
    2.3.3Synchronizationconditionofselfsynchronousvibratingmachineswithdualmasses
    2.3.4Stabilityconditionsofsynchronousstates
    2.3.5Someresultsoftheexperiments
    2.4Theoryofsynchronizationforcentroidrotationvibratingmachineswithtwoexciters
    2.4.1Equationsofmotionandtheirresolutions
    2.4.2SynchronizationconditionobtainedbyHamiltonianprinciple
    2.4.3Stabilityconditionofsynchronization
    2.4.4Vibration-orientedangleflofthemasscenterandorbitofthemachinebody
    2.4.5Experimentalresultsanddiscussions
    2.5Timesfrequencysynchronizationofnonlinearselfsynchronousvibratingmachines
    2.5.1Conditionoftimesfrequencysynchronizationofnonlinearselfsynchronousvibratingmachines
    2.5.2Stabilityconditionoftimesfrequencysynchronizationfornonlinearvibratingmachines
    2.6Conclusions

    Chapter3VibratorySynchronizationofSpatialMotionSelfSynchronousVibratingMachines
    3.1Introduction
    3.2Synchronizationconditionandstabilityconditionofsynchronousstatesofspatialmotionsinglemassselfsynchronousvibratingmachinery
    3.2.1Motionequationsofvibratingsystemandthesolution
    3.2.2Conditionofimplementingsynchronization
    3.2.3Twosynchronousstatesandthestabilitycondition
    3.3Synchronizationofdual-massselfsynchronousvibratingmachinesofspatialmotion
    3.4Experimentalresultsandtheanalysis
    3.4.1Experimentsofsynchronizationwhentwomotorsarepoweredon
    3.4.2Experimentsofsynchronizationwhenonemotorispoweredoff
    3.4.3Experimentsforstabilityofthetwosynchronousstates
    3.4.4Experimentsforcontrollingthevibration-orientedangleofselfsynchronousvibratingmachines

    Chapter4VibratorySynchronizationTransmissionandItsApplications
    4.1Introduction
    4.2Motionequationandsteadystateresponses
    4.3Synchronizationcriterionandstabilitycriterion
    4.3.1Synchronizationcriterionofvibratorysynchronizationtransmission
    4.3.2Twosynchronousstatesandstabilitycriterionsof△vand△v2
    4.3.3Discussionsaboutsomespecialcases
    4.4Criterionandstabilityofvibratorysynchronizationtransmissioninsomespecificconditions
    4.4.1Criterionofvibratorysynchronizationtransmission
    4.4.2Stabilitycriterionofsynchronousstate
    4.5Experimentalresultsanddiscussions
    4.6Conclusions

    Chapter5SelfSynchronizationofDualMotorswithElectromechanicalCoupling123
    5.1Electromechanicalcouplingmathematicalmodelofadual-shaftinertialvibratingmachine
    5.2Performanceofelectromechanicalcouplingselfsynchronizationofaninertialvibratingmachinewithtwoshafts
    5.2.1Synchronizationofstartingprocessofthesystemunderanidealcondition
    5.2.2Synchronousprocessofstartingwithinitialphasedifferencesbetweenthetwoeccentrics
    5.2.3Synchronousstartingprocessofthevibratingsystemwithasmallperformancedifferencebetweenthetwomotors
    5.2.4Transientprocessofsynchronizationwithspeeddisturbanceorphasedisturbance
    5.3Transientprocessofvibratorysynchronizationtransmission
    5.4Electromechanicalcouplingselfsynchronouscharacteristicsofelasticlinkvibratingmachines
    5.4.1Electromechanicalcouplingmathematicalmodelofthesystem
    5.4.2Start-uptransientsynchronousprocessofthesystemwithaninitialphasedifference
    5.4.3Transientprocessofthesystemwithaperformancedifferencebetweenthetwomotors
    5.4.4Transientprocessofselfsynchronizationofthesystemwithspeeddisturbance
    5.5Electromechanicalcouplinganalysisofsynchronizationofelectricvibratingmachinewithtwoexcitingheaders
    5.5.1Equationsofmotion
    5.5.2Selfsynchronouscharacteristicsoftheelectromechanicalcoupling...

    Chapter6ControlledSynchronizationofMulti-motorMechanicalSystemsUsingTraditionalMethods
    6.1Introduction
    6.2Methodsfordetectionofmotorspeedandphaseinmechanicalsystemswithmulti-motordrives
    6.2.1Synchronousmeasurementofrotationalvelocitiesformultiplemotorsinmechanicalsystems
    6.2.2Determinationofrotationaldirection
    6.2.3Phasemeasurement
    6.3ControlledsynchronizationofmechanicalsystemswithmultiplemotorsbyPID
    6.3.1DesignmethodsofaPIDcontroller
    6.3.2DesignofPIDcontrolforvelocitysynchronizationofmechanicalsystemswithmulti-motordrives
    6.4Slidingmodevariablestructurecontrol
    6.5Modelreferenceadaptivecontrol
    6.5.1Mathematicalmodelofcontrolledobjectandreferencemodel
    6.5.2Designofanadjustablecontroller
    6.5.3Developmentoftheequivalenterrorsystem
    6.5.4Adaptivelaws
    6.6Speedsensorlessfield-orientedcontrolofsynchronizationofmechanicalsystemswithmulti-motordrives
    6.6.1Adaptiveidentificationmodelsofrotorspeedandmagneticlinkageofaninductionmotor
    6.6.2Speedsensorlesscontrolofinductionmotors
    6.6.3Controlledsynchronizationofmechanicalsystemswithmulti-motordrives
    6.7Conclusions

    Chapter7IntelligentControlledSynchronizationsofMechanicalSystemswithMulti-motorDrives
    7.1Introduction
    7.1.1Developmentofintelligentcontrol
    7.1.2Featuresofintelligentcontrolobjects
    7.1.3Strategiesofintelligentcontrol
    7.2Self-organizingandself-earningfuzzycontrolofamechanicalsystemwithdualmotors
    7.2.1Self-organizingfuzzycontroloftwo-motortrackingsynchronization
    7.2.2FuzzymodelofanACmotor
    7.2.3FuzzymodelofanACmotorpoweredwithatransducer
    7.2.4Designofthefuzzycontroller
    7.2.5Experimentsoffuzzycontrolforsynchronizationtracking
    7.3Fuzzymonitoringcontrolofphasedifferenceforavibratingmachinewithdual-motordrivesrotatinginthesamedirection
    7.3.1Mechanicalmodelofavibratingsystemwithdual-motordrives
    7.3.2Speedsynchronizationcontrolofthedualmotors
    7.3.3Fuzzymonitoringcontrolofphasesynchronizationofthetwoeccentricrotors
    7.3.4Phasesynchronizationcontrolandsimulationresultsofthevibratingsystemwithdual-motordrives
    7.4Conclusions

    Chapter8CompositeSynchronizationofVibratingMachineswithFourMotors
    8.1Mechanicalmodelofavibratingsystemwithfourmotors
    8.1.1Mechanicalmodelofsystem
    8.1.2Conditionsofcompositesynchronizationoffoureccentricrotors
    8.2Fuzzycontrolofthephasedifference
    8.2.1Neuralnetworksimulator
    8.2.2Fuzzycontrolforphasetracking
    8.2.3Controlsystemforphasesynchronoustracking
    8.3Simulationresults
    8.4Conclusions

    Chapter9FixedSpeedRatioControlofTwo-motorMechanicalSystems
    9.1Modelofthefixedspeedratiotrackingcontrolsystem
    9.2Designofacompositevariablestructurecontrollerforfixedspeedratiocontrol
    9.3Computercontrolsystemofthefixedspeedratiocontrol
    9.4Speedmeasurementoftherotor
    9.4.1Principleofspeedmeasurement
    9.4.2Hardwareofthespeedmeasurementsystem
    9.5Softwaredesignofthefixedspeedratiocontrolsystem
    9.6Simulationsandexperiments
    9.6.1Resultsofsimulations
    9.6.2Experimentalresultsanddiscussion
    References
查看详情
相关图书 / 更多
工程中的振动同步与控制同步(英文版)
工程估价(吴凯)(第三版)
吴凯 主编 蓝磊、郑小纯 副主编
工程中的振动同步与控制同步(英文版)
工程帝国:19世纪英国技术文化史 科学文化经典译丛
(英)本·马斯登,(英)克罗斯比·史密斯
工程中的振动同步与控制同步(英文版)
工程结构可靠性分析与风险优化设计
李刚,曾岩
工程中的振动同步与控制同步(英文版)
工程热力学(第七版)
谭羽非,吴家正,朱彤 编
工程中的振动同步与控制同步(英文版)
工程项目管理(第四版)
杨晓庄,沈爱华
工程中的振动同步与控制同步(英文版)
工程数学 线性代数(第七版)同步辅导及习题全解
蔡全领 苏志平
工程中的振动同步与控制同步(英文版)
工程信号与系统(第2版)
郭宝龙主编,郭宝龙 朱娟娟,闫允一,吴宪
工程中的振动同步与控制同步(英文版)
工程造价全过程管理系列丛书 工程结算与决算 第2版
方春艳
工程中的振动同步与控制同步(英文版)
工程力学教程(第四版)
章向明等
工程中的振动同步与控制同步(英文版)
工程实践通识:新手工程师从入门到精通
(澳大利亚 ) 詹姆斯· 特里维廉(James P. Trevelyan)
工程中的振动同步与控制同步(英文版)
工程伦理导论(慕课版)
沈艳 朱烨
工程中的振动同步与控制同步(英文版)
工程地质学实习教程(第2版)
唐益群、石振明、黄雨、叶真华、周洁