微电子封装组件的建模和仿真:制造可靠性与测试

微电子封装组件的建模和仿真:制造可靠性与测试
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: ,
2012-01
版次: 1
ISBN: 9787122123725
定价: 298.00
装帧: 精装
开本: 16开
纸张: 其他
页数: 564页
分类: 工程技术
9人买过
  •   随着电子封装的发展,电子封装已从传统的四个主要功能(电源系统、信号分布及传递、散热及机械保护)扩展为六个功能,即增加了DFX及系统测试两个新的功能。其中DFX是为“X”而设计,X包括:可制造性、可靠性、可维护性、成本,甚至六西格玛。DFX有望在产品设计阶段实现工艺窗口的确定、可靠性评估和测试结构及参数的设计等功能,真正做到“第一次就能成功”,从而将计算机辅助工程(CAE)变为计算机主导工程(CE),以大大加速产品的上市速度。本书是全面介绍DFX在封装中应用的图书。作为封装工艺过程和快速可靠性评估及测试建模仿真的第一本专著,《微电子封装组件的建模和仿真:制造可靠性与测试》中包含两位作者刘胜、刘勇在工业界二十多年的丰富经验,以及在MEMS、IC和LED封装部分成功的实例,希望能给国内同行起到抛砖引玉的作用。同时,读者将会从书中的先进工程设计和微电子产品的并行工程和协同设计方法中受益。《微电子封装组件的建模和仿真:制造可靠性与测试》主要读者对象为学习DFX(制造工艺设计、测试设计、可靠性设计等)的研究人员、工程师和学生等。 Foreword
    Foreword
    Preface
    Acknowledgments
    AbouttheAutho 
    PartIMechanicsandModeling
    1Co titutiveModelsandFiniteElementMethod
    1.1Co titutiveModelsforTypicalMaterials
    1.1.1LinearElasticity
    1.1.2Elastic-Visco-Plasticity
    1.2FiniteElementMethod
    1.2.1BasicFiniteElementEquatio 
    1.2.2NonlinearSolutionMethods
    1.2.3AdvancedModelingTechniquesinFinite
    ElementAnalysis
    1.2.4FiniteElementApplicationinSemiconductor
    PackagingModeling
    1.3ChapterSummary
    References

    2MaterialandStructuralTestingforSmallSamples
    2.1MaterialTestingforSolderJoints
    2.1.1Specime 
    2.1.2AThermo-mechanicalFatigueTester
    2.1.3Te ileTest
    2.1.4CreepTest
    2.1.5FatigueTest
    2.2ScaleEffectofPackagingMaterials
    2.2.1Specime 
    2.2.2ExperimentalResultsandDiscussio 
    2.2.3ThinFilmScaleDependenceforPolymerThinFilms
    2.3Two-ballJointSpecimenFatigueTesting
    2.4ChapterSummary
    References

    3Co titutiveandUse-suppliedSubroutinesforSolde 
    Co ideringDamageEvolution
    3.1Co titutiveModelforTin-leadSolderJoint
    3.1.1ModelFormulation
    3.1.2DeterminationofMaterialCo tants
    3.1.3ModelPrediction
    3.2Visco-elastic-plasticPropertiesandCo titutiveModelingofUnder?lls
    3.2.1Co titutiveModelingofUnder?lls
    3.2.2Identi?cationofMaterialCo tants
    3.2.3ModelVeri?cationandPrediction
    3.3ADamageCouplingFrameworkofUni?edViscoplasticity
    fortheFatigureofSolderAlloys
    3.3.1DamageCouplingThermodynamicFramework
    3.3.2LargeDeformationFormulation
    3.3.3Identi?cationoftheMaterialParamete 
    3.3.4CreepDamage
    3.4User-suppliedSubroutinesforSolde Co idering
    DamageEvolution
    3.4.1Return-MappingAlgorithmandFEAImplementation
    3.4.2AdvancedFeaturesoftheImplementation
    3.4.3Applicatio oftheMethodology
    3.5ChapterSummary
    References

    4AcceleratedFatigueLifeAssessmentApproachesforSolde 
    inPackages
    4.1LifePredictionMethodology
    4.1.1Strain-BasedApproach
    4.1.2Energy-BasedApproach
    4.1.3FractureMechanics-BasedApproach
    4.2AcceleratedTestingMethodology
    4.2.1FailureModesviaAcceleratedTestingBounds
    4.2.2IsothermalFatigueviaThermalFatigue
    4.3Co titutiveModelingMethodology
    4.3.1SeparatedModelingviaUni?edModeling
    4.3.2ViscoplasticitywithDamageEvolution
    4.4SolderJointReliabilityviaFEA
    4.4.1LifePredictionofFordJointSpecimen
    4.4.2AcceleratedTesting:I ightsfromLifePrediction
    4.4.3FatigueLifePredictionofaPQFPPackage
    4.5LifePredictionofFlip-ChipPackages
    4.5.1FatigueLifePredictionwithandwithoutUnder?ll
    4.5.2LifePredictionofFlip-ChipswithoutUnder?llviaUni?edandSeparated
    Co titutiveModeling
    4.5.3LifePredictionofFlip-ChipsunderAcceleratedTesting
    4.6ChapterSummary
    References

    5Multi-physicsandMulti-scaleModeling
    5.1Multi-physicsModeling
    5.1.1Direct-coupledAnalysis
    5.1.2SequentialCoupling
    5.2Multi-scaleModeling
    5.3ChapterSummary
    References

    6ModelingValidationTools
    6.1StructuralMechanicsAnalysis
    6.2RequirementsofExperimentalMethodsforStructural
    MechanicsAnalysis
    6.3WholeFieldOpticalTechniques
    6.4ThermalStrai MeasurementsUsingMoireInterferometry
    6.4.1ThermalStrai inaPlasticBallGridArray
    (PBGA)Interconnection
    6.4.2Real-timeThermalDeformationMeasurements
    UsingMoireInteferometry
    6.5In-situMeasurementsonMicro-machinedSe o 
    6.5.1Micro-machinedMembraneStructure
    inaChemicalSe or
    6.5.2In-situMeasurementUsingTwyman-Green
    Interferometry
    6.5.3MembraneDeformatio duetoPowerCycles
    6.6Real-timeMeasurementsUsingSpeckleInteferometry
    6.7ImageProcessingandComputerAidedOpticalTechniques
    6.7.1ImageProcessingforFringeAnalysis
    6.7.2PhaseShiftingTechniqueforIncreasing
    DisplacementResolution
    6.8Real-TimeThermal-MechanicalLoadingTools
    6.8.1MicroMechanicalTesting
    6.8.2EnvironmentalChamber
    6.9WarpageMeasurementUsingPM-SMSystem
    6.9.1ShadowMoireandProjectMoireSetup
    6.9.2WarpageMeasurementofaBGA,TwoCrowdedPCBs
    6.10ChapterSummary
    References

    7ApplicationofFractureMechanics
    7.1FundamentalofFractureMechanics
    7.1.1EnergyReleaseRate
    7.1.2JIntegral
    7.1.3InterfacialCrack
    7.2BulkMaterialCracksinElectronicPackages
    7.2.1Background
    7.2.2CrackPropagationinCeramic/Adhesive/GlassSystem
    7.2.3Results
    7.3InterfacialFractureToughness
    7.3.1Background
    7.3.2InterfacialFractureToughnessofFlip-chipPackage
    betweenPassivatedSiliconChipandUnder?ll
    7.4Three-dime ionalEnergyReleaseRateCalculation
    7.4.1FractureAnalysis
    7.4.2ResultsandComparison
    7.5ChapterSummary
    References

    8ConcurrentEngineeringforMicroelectronics
    8.1DesignOptimizatio 
    8.2NewDevelopmentsandTrendsinIntegrated
    DesignTools
    8.3ChapterSummary
    References

    9TypicalICPackagingandAssemblyProcesses
    9.1WaferProcessandThinning
    9.1.1WaferProcessStressModels
    9.1.2ThinFilmDeposition
    9.1.3BacksideGrindforThinning
    9.2DiePickUp
    9.3DieAttach
    9.3.1MaterialCo titutiveRelatio 
    9.3.2ModelingandNumericalStrategies
    9.3.3FEASimulationResultofFlip-ChipAttach
    9.4WireBonding
    9.4.1Assumption,MaterialPropertiesandMethodofAnalysis
    9.4.2WireBondingProcesswithDifferentParamete 
    9.4.3ImpactofUltrasonicAmplitude
    9.4.4ImpactofUltrasonicFrequency
    9.4.5ImpactofFrictionCoef?cientsbetweenBondPadandFAB
    9.4.6ImpactofDifferentBondPadThickness
    9.4.7ImpactofDifferentBondPadStructures
    9.4.8ModelingResultsandDiscussionforCoolingSubstrate
    TemperatureafterWireBonding
    9.5Molding
    9.5.1MoldingFlowSimulation
    9.5.2CuringStressModel
    9.5.3MoldingEjectionandClampingSimulation
    9.6LeadframeForming/Singulation
    9.6.1EulerForwardve usBackwardSolutionMethod
    9.6.2PunchProcessSetup
    9.6.3PunchSimulationbyANSYSImplicit
    9.6.4PunchSimulationbyLS-DYNA
    9.6.5ExperimentalData
    9.7ChapterSummary
    References

    10OptoPackagingandAssembly
    10.1SiliconSubstrateBasedOptoPackageAssembly
    10.1.1StateoftheTechnology
    10.1.2MonteCarloSimulationofBonding/SolderingProcess
    10.1.3EffectofMatchingFluid
    10.1.4EffectoftheEncapsulation
    10.2WeldingofaPumpLaserModule
    10.2.1ModuleDescription
    10.2.2ModulePackagingProcessFlow
    10.2.3RadiationHeatTra ferModelingforHermetic
    SealingProcess
    10.2.4Two-Dime ionalFEAModelingforHermeticSealing
    10.2.5CavityRadiationAnalysesResultsandDiscussio 
    10.3ChapterSummary
    References

    11MEMSandMEMSPackageAssembly
    11.1APressureSe orPackaging(DeformationandStress)
    11.1.1PiezoresistanceinSilicon
    11.1.2FiniteElementModelingandGeometry
    11.1.3MaterialProperties
    11.1.4ResultsandDiscussion
    11.2MountingofPressureSe or
    11.2.1MountingProcess
    11.2.2Modeling
    11.2.3Results
    11.2.4ExperimentsandDiscussio 
    11.3Thermo-FluidBasedAccelerometerPackaging
    11.3.1DeviceStructureandOperationPrinciple
    11.3.2LinearityAnalysis
    11.3.3DesignCo ideration
    11.3.4Fabrication
    11.3.5Experiment
    11.4PlasticPackagingforACapacitanceBasedAccelerometer
    11.4.1Micro-MachinedAccelerometer
    11.4.2Wafer-LevelPackaging
    11.4.3PackagingofCappedAccelerometer
    11.5TirePressureMonitoringSystem(TPMS)Antenna
    11.5.1TestofTPMSSystemwithWheelAntenna
    11.5.23DElectromagneticModelingofTheWheelAntenna
    11.5.3StressModelingofI talledTPMS
    11.6Thermo-FluidBasedGyroscopePackaging
    11.6.1OperatingPrincipleandDesign
    11.6.2AnalysisofAngularAccelerationCoupling
    11.6.3NumericalSimulationandAnalysis
    11.7MicrojetsforRadarandLEDCooling
    11.7.1MicrojetArrayCoolingSystem
    11.7.2PreliminaryExperiments
    11.7.3SimulationandModelVeri?cation
    11.7.4ComparisonandOptimizationofThreeMicrojetDevices
    11.8AirFlowSe or
    11.8.1OperationPrinciple
    11.8.2SimulationofFlowConditio 
    11.8.3SimulationofTemperatureFieldontheSe or
    ChipSurface
    11.9DirectNumericalSimulationofParticleSeparation
    byDirectCurrentDielectrophoresis
    11.9.1MathematicalModelandImplementation
    11.9.2ResultsandDiscussion
    11.10ModelingofMicro-MachineforUseinGastrointestinalEndoscopy
    11.10.1Methods
    11.10.2ResultsandDiscussion
    11.11ChapterSummary
    Reference

    12SysteminPackage(SIP)Assembly
    12.1AssemblyProcessofSidebySidePlacedSIP
    12.1.1MultipleDieAttachProcess
    12.1.2CoolingStressandWarpageSimulationafterMolding
    12.1.3StressSimulationinTrimProcess
    12.2ImpactoftheNonlinearMaterialsBehavio ontheFlip-chip
    PackagingAssemblyReliability
    12.2.1FiniteElementModelingandEffectofMaterialModels
    12.2.2Experiment
    12.2.3ResultsandDiscussio 
    12.3StackedDieFlip-chipAssemblyLayoutandtheMaterialSelection
    12.3.1FiniteElementModelfortheStackDieFSBGA
    12.3.2AssemblyLayoutInvestigation
    12.3.3MaterialSelection
    12.4ChapterSummary
    References
    PartIIIModelinginMicroelectronicPackageReliabilityandTest

    13WaferProbingTest
    13.1ProbeTestModel
    13.2ParameterProbeTestModelingResultsandDiscussio 
    13.2.1ImpactofProbeTipGeometryShapes
    13.2.2ImpactofContactFriction
    13.2.3ImpactofProbeTipScrub
    13.3ComparisonModeling:ProbeTestve usWireBonding
    13.4DesignofExperiment(DOE)StudyandCorrelationofProbing
    ExperimentandFEAModeling
    13.5ChapterSummary
    References

    14PowerandThermalCycling,SolderJointFatigueLife
    14.1DieAttachProcessandMaterialRelatio 
    14.2PowerCyclingModelingandDiscussion
    14.3ThermalCyclingModelingandDiscussion
    14.4MethodologyofSolderJointFatigueLifePrediction
    14.5FatigueLifePredictionofaStackDieFlip-chiponSilicon(FSBGA)
    14.6EffectofCleanedandNon-CleanedSituatio ontheReliability
    ofFlip-ChipPackages
    14.6.1FiniteElementModelsfortheCleanandNon-CleanCases
    14.6.2ModelEvaluation
    14.6.3ReliabilityStudyfortheSolderJoints
    14.7ChapterSummary
    References

    15PassivationCrackAvoidance
    15.1Ratcheting-InducedStableCracking:ASynopsis
    15.2RatchetinginMetalFilms
    15.3CrackinginPassivationFilms
    15.4DesignModi?catio 
    15.5ChapterSummary
    References

    16DropTest
    16.1ControlledPulseDropTest
    16.1.1SimulationMethods
    16.1.2SimulationResults
    16.1.3ParametricStudy
    16.2FreeDrop
    16.2.1SimulatedDropTestProcedure
    16.2.2ModelingResultsandDiscussion
    16.3PortableElectronicDevicesDropTestandSimulation
    16.3.1TestSetUp
    16.3.2ModelingandSimulation
    16.3.3Results
    16.4ChapterSummary
    References

    17Electromigration
    17.1BasicMigrationFormulationandAlgorithm
    17.2ElectromigrationExamplesfromICDeviceandPackage
    17.2.1ASweatStructure
    17.2.2AFlip-chipCSPwithSolderBumps
    17.3ChapterSummary
    References

    18PopcorninginPlasticPackages
    18.1StatementofProblem
    18.2Analysis
    18.3ResultsandCompariso 
    18.3.1BehaviorofaDelaminatedPackageduetoPulsed
    Heating-Veri?cation
    18.3.2ConvergenceoftheTotalStrainEnergyReleaseRate
    18.3.3EffectofDelaminationSizeandVariousProcesses
    foraThickPackage
    18.3.4EffectofMoistureExpa ionCoef?cient
    18.4ChapterSummary
    References
    PartIVModernModelingandSimulationMethodologies

    19ClassicalMolecularDynamics
    19.1GeneralDescriptionofMolecularDynamicsMethod
    19.2MechanismofCarbonNanotubeWeldingontotheMetal
    19.2.1ComputationalMethodology
    19.2.2ResultsandDiscussion
    19.3Applicatio ofCar–ParrinelloMolecularDynamics
    19.3.1Car–ParrinelloSimulationofInitialGrowthStage
    ofGalliumNitrideonCarbonNanotube
    19.3.2EffectsofMechanicalDeformationonOuterSurface
    ReactivityofCarbonNanotubes
    19.3.3AdsorptionCon?gurationofMagnesiumonWurtzite
    GalliumNitrideSurfaceUsingFi t-principlesCalculatio 
    19.4Nano-weldingbyRFHeating
    19.5ChapterSummary
    References
    Appendix
    SummaryofContinuousMechanics
    Index
  • 内容简介:
      随着电子封装的发展,电子封装已从传统的四个主要功能(电源系统、信号分布及传递、散热及机械保护)扩展为六个功能,即增加了DFX及系统测试两个新的功能。其中DFX是为“X”而设计,X包括:可制造性、可靠性、可维护性、成本,甚至六西格玛。DFX有望在产品设计阶段实现工艺窗口的确定、可靠性评估和测试结构及参数的设计等功能,真正做到“第一次就能成功”,从而将计算机辅助工程(CAE)变为计算机主导工程(CE),以大大加速产品的上市速度。本书是全面介绍DFX在封装中应用的图书。作为封装工艺过程和快速可靠性评估及测试建模仿真的第一本专著,《微电子封装组件的建模和仿真:制造可靠性与测试》中包含两位作者刘胜、刘勇在工业界二十多年的丰富经验,以及在MEMS、IC和LED封装部分成功的实例,希望能给国内同行起到抛砖引玉的作用。同时,读者将会从书中的先进工程设计和微电子产品的并行工程和协同设计方法中受益。《微电子封装组件的建模和仿真:制造可靠性与测试》主要读者对象为学习DFX(制造工艺设计、测试设计、可靠性设计等)的研究人员、工程师和学生等。
  • 目录:
    Foreword
    Foreword
    Preface
    Acknowledgments
    AbouttheAutho 
    PartIMechanicsandModeling
    1Co titutiveModelsandFiniteElementMethod
    1.1Co titutiveModelsforTypicalMaterials
    1.1.1LinearElasticity
    1.1.2Elastic-Visco-Plasticity
    1.2FiniteElementMethod
    1.2.1BasicFiniteElementEquatio 
    1.2.2NonlinearSolutionMethods
    1.2.3AdvancedModelingTechniquesinFinite
    ElementAnalysis
    1.2.4FiniteElementApplicationinSemiconductor
    PackagingModeling
    1.3ChapterSummary
    References

    2MaterialandStructuralTestingforSmallSamples
    2.1MaterialTestingforSolderJoints
    2.1.1Specime 
    2.1.2AThermo-mechanicalFatigueTester
    2.1.3Te ileTest
    2.1.4CreepTest
    2.1.5FatigueTest
    2.2ScaleEffectofPackagingMaterials
    2.2.1Specime 
    2.2.2ExperimentalResultsandDiscussio 
    2.2.3ThinFilmScaleDependenceforPolymerThinFilms
    2.3Two-ballJointSpecimenFatigueTesting
    2.4ChapterSummary
    References

    3Co titutiveandUse-suppliedSubroutinesforSolde 
    Co ideringDamageEvolution
    3.1Co titutiveModelforTin-leadSolderJoint
    3.1.1ModelFormulation
    3.1.2DeterminationofMaterialCo tants
    3.1.3ModelPrediction
    3.2Visco-elastic-plasticPropertiesandCo titutiveModelingofUnder?lls
    3.2.1Co titutiveModelingofUnder?lls
    3.2.2Identi?cationofMaterialCo tants
    3.2.3ModelVeri?cationandPrediction
    3.3ADamageCouplingFrameworkofUni?edViscoplasticity
    fortheFatigureofSolderAlloys
    3.3.1DamageCouplingThermodynamicFramework
    3.3.2LargeDeformationFormulation
    3.3.3Identi?cationoftheMaterialParamete 
    3.3.4CreepDamage
    3.4User-suppliedSubroutinesforSolde Co idering
    DamageEvolution
    3.4.1Return-MappingAlgorithmandFEAImplementation
    3.4.2AdvancedFeaturesoftheImplementation
    3.4.3Applicatio oftheMethodology
    3.5ChapterSummary
    References

    4AcceleratedFatigueLifeAssessmentApproachesforSolde 
    inPackages
    4.1LifePredictionMethodology
    4.1.1Strain-BasedApproach
    4.1.2Energy-BasedApproach
    4.1.3FractureMechanics-BasedApproach
    4.2AcceleratedTestingMethodology
    4.2.1FailureModesviaAcceleratedTestingBounds
    4.2.2IsothermalFatigueviaThermalFatigue
    4.3Co titutiveModelingMethodology
    4.3.1SeparatedModelingviaUni?edModeling
    4.3.2ViscoplasticitywithDamageEvolution
    4.4SolderJointReliabilityviaFEA
    4.4.1LifePredictionofFordJointSpecimen
    4.4.2AcceleratedTesting:I ightsfromLifePrediction
    4.4.3FatigueLifePredictionofaPQFPPackage
    4.5LifePredictionofFlip-ChipPackages
    4.5.1FatigueLifePredictionwithandwithoutUnder?ll
    4.5.2LifePredictionofFlip-ChipswithoutUnder?llviaUni?edandSeparated
    Co titutiveModeling
    4.5.3LifePredictionofFlip-ChipsunderAcceleratedTesting
    4.6ChapterSummary
    References

    5Multi-physicsandMulti-scaleModeling
    5.1Multi-physicsModeling
    5.1.1Direct-coupledAnalysis
    5.1.2SequentialCoupling
    5.2Multi-scaleModeling
    5.3ChapterSummary
    References

    6ModelingValidationTools
    6.1StructuralMechanicsAnalysis
    6.2RequirementsofExperimentalMethodsforStructural
    MechanicsAnalysis
    6.3WholeFieldOpticalTechniques
    6.4ThermalStrai MeasurementsUsingMoireInterferometry
    6.4.1ThermalStrai inaPlasticBallGridArray
    (PBGA)Interconnection
    6.4.2Real-timeThermalDeformationMeasurements
    UsingMoireInteferometry
    6.5In-situMeasurementsonMicro-machinedSe o 
    6.5.1Micro-machinedMembraneStructure
    inaChemicalSe or
    6.5.2In-situMeasurementUsingTwyman-Green
    Interferometry
    6.5.3MembraneDeformatio duetoPowerCycles
    6.6Real-timeMeasurementsUsingSpeckleInteferometry
    6.7ImageProcessingandComputerAidedOpticalTechniques
    6.7.1ImageProcessingforFringeAnalysis
    6.7.2PhaseShiftingTechniqueforIncreasing
    DisplacementResolution
    6.8Real-TimeThermal-MechanicalLoadingTools
    6.8.1MicroMechanicalTesting
    6.8.2EnvironmentalChamber
    6.9WarpageMeasurementUsingPM-SMSystem
    6.9.1ShadowMoireandProjectMoireSetup
    6.9.2WarpageMeasurementofaBGA,TwoCrowdedPCBs
    6.10ChapterSummary
    References

    7ApplicationofFractureMechanics
    7.1FundamentalofFractureMechanics
    7.1.1EnergyReleaseRate
    7.1.2JIntegral
    7.1.3InterfacialCrack
    7.2BulkMaterialCracksinElectronicPackages
    7.2.1Background
    7.2.2CrackPropagationinCeramic/Adhesive/GlassSystem
    7.2.3Results
    7.3InterfacialFractureToughness
    7.3.1Background
    7.3.2InterfacialFractureToughnessofFlip-chipPackage
    betweenPassivatedSiliconChipandUnder?ll
    7.4Three-dime ionalEnergyReleaseRateCalculation
    7.4.1FractureAnalysis
    7.4.2ResultsandComparison
    7.5ChapterSummary
    References

    8ConcurrentEngineeringforMicroelectronics
    8.1DesignOptimizatio 
    8.2NewDevelopmentsandTrendsinIntegrated
    DesignTools
    8.3ChapterSummary
    References

    9TypicalICPackagingandAssemblyProcesses
    9.1WaferProcessandThinning
    9.1.1WaferProcessStressModels
    9.1.2ThinFilmDeposition
    9.1.3BacksideGrindforThinning
    9.2DiePickUp
    9.3DieAttach
    9.3.1MaterialCo titutiveRelatio 
    9.3.2ModelingandNumericalStrategies
    9.3.3FEASimulationResultofFlip-ChipAttach
    9.4WireBonding
    9.4.1Assumption,MaterialPropertiesandMethodofAnalysis
    9.4.2WireBondingProcesswithDifferentParamete 
    9.4.3ImpactofUltrasonicAmplitude
    9.4.4ImpactofUltrasonicFrequency
    9.4.5ImpactofFrictionCoef?cientsbetweenBondPadandFAB
    9.4.6ImpactofDifferentBondPadThickness
    9.4.7ImpactofDifferentBondPadStructures
    9.4.8ModelingResultsandDiscussionforCoolingSubstrate
    TemperatureafterWireBonding
    9.5Molding
    9.5.1MoldingFlowSimulation
    9.5.2CuringStressModel
    9.5.3MoldingEjectionandClampingSimulation
    9.6LeadframeForming/Singulation
    9.6.1EulerForwardve usBackwardSolutionMethod
    9.6.2PunchProcessSetup
    9.6.3PunchSimulationbyANSYSImplicit
    9.6.4PunchSimulationbyLS-DYNA
    9.6.5ExperimentalData
    9.7ChapterSummary
    References

    10OptoPackagingandAssembly
    10.1SiliconSubstrateBasedOptoPackageAssembly
    10.1.1StateoftheTechnology
    10.1.2MonteCarloSimulationofBonding/SolderingProcess
    10.1.3EffectofMatchingFluid
    10.1.4EffectoftheEncapsulation
    10.2WeldingofaPumpLaserModule
    10.2.1ModuleDescription
    10.2.2ModulePackagingProcessFlow
    10.2.3RadiationHeatTra ferModelingforHermetic
    SealingProcess
    10.2.4Two-Dime ionalFEAModelingforHermeticSealing
    10.2.5CavityRadiationAnalysesResultsandDiscussio 
    10.3ChapterSummary
    References

    11MEMSandMEMSPackageAssembly
    11.1APressureSe orPackaging(DeformationandStress)
    11.1.1PiezoresistanceinSilicon
    11.1.2FiniteElementModelingandGeometry
    11.1.3MaterialProperties
    11.1.4ResultsandDiscussion
    11.2MountingofPressureSe or
    11.2.1MountingProcess
    11.2.2Modeling
    11.2.3Results
    11.2.4ExperimentsandDiscussio 
    11.3Thermo-FluidBasedAccelerometerPackaging
    11.3.1DeviceStructureandOperationPrinciple
    11.3.2LinearityAnalysis
    11.3.3DesignCo ideration
    11.3.4Fabrication
    11.3.5Experiment
    11.4PlasticPackagingforACapacitanceBasedAccelerometer
    11.4.1Micro-MachinedAccelerometer
    11.4.2Wafer-LevelPackaging
    11.4.3PackagingofCappedAccelerometer
    11.5TirePressureMonitoringSystem(TPMS)Antenna
    11.5.1TestofTPMSSystemwithWheelAntenna
    11.5.23DElectromagneticModelingofTheWheelAntenna
    11.5.3StressModelingofI talledTPMS
    11.6Thermo-FluidBasedGyroscopePackaging
    11.6.1OperatingPrincipleandDesign
    11.6.2AnalysisofAngularAccelerationCoupling
    11.6.3NumericalSimulationandAnalysis
    11.7MicrojetsforRadarandLEDCooling
    11.7.1MicrojetArrayCoolingSystem
    11.7.2PreliminaryExperiments
    11.7.3SimulationandModelVeri?cation
    11.7.4ComparisonandOptimizationofThreeMicrojetDevices
    11.8AirFlowSe or
    11.8.1OperationPrinciple
    11.8.2SimulationofFlowConditio 
    11.8.3SimulationofTemperatureFieldontheSe or
    ChipSurface
    11.9DirectNumericalSimulationofParticleSeparation
    byDirectCurrentDielectrophoresis
    11.9.1MathematicalModelandImplementation
    11.9.2ResultsandDiscussion
    11.10ModelingofMicro-MachineforUseinGastrointestinalEndoscopy
    11.10.1Methods
    11.10.2ResultsandDiscussion
    11.11ChapterSummary
    Reference

    12SysteminPackage(SIP)Assembly
    12.1AssemblyProcessofSidebySidePlacedSIP
    12.1.1MultipleDieAttachProcess
    12.1.2CoolingStressandWarpageSimulationafterMolding
    12.1.3StressSimulationinTrimProcess
    12.2ImpactoftheNonlinearMaterialsBehavio ontheFlip-chip
    PackagingAssemblyReliability
    12.2.1FiniteElementModelingandEffectofMaterialModels
    12.2.2Experiment
    12.2.3ResultsandDiscussio 
    12.3StackedDieFlip-chipAssemblyLayoutandtheMaterialSelection
    12.3.1FiniteElementModelfortheStackDieFSBGA
    12.3.2AssemblyLayoutInvestigation
    12.3.3MaterialSelection
    12.4ChapterSummary
    References
    PartIIIModelinginMicroelectronicPackageReliabilityandTest

    13WaferProbingTest
    13.1ProbeTestModel
    13.2ParameterProbeTestModelingResultsandDiscussio 
    13.2.1ImpactofProbeTipGeometryShapes
    13.2.2ImpactofContactFriction
    13.2.3ImpactofProbeTipScrub
    13.3ComparisonModeling:ProbeTestve usWireBonding
    13.4DesignofExperiment(DOE)StudyandCorrelationofProbing
    ExperimentandFEAModeling
    13.5ChapterSummary
    References

    14PowerandThermalCycling,SolderJointFatigueLife
    14.1DieAttachProcessandMaterialRelatio 
    14.2PowerCyclingModelingandDiscussion
    14.3ThermalCyclingModelingandDiscussion
    14.4MethodologyofSolderJointFatigueLifePrediction
    14.5FatigueLifePredictionofaStackDieFlip-chiponSilicon(FSBGA)
    14.6EffectofCleanedandNon-CleanedSituatio ontheReliability
    ofFlip-ChipPackages
    14.6.1FiniteElementModelsfortheCleanandNon-CleanCases
    14.6.2ModelEvaluation
    14.6.3ReliabilityStudyfortheSolderJoints
    14.7ChapterSummary
    References

    15PassivationCrackAvoidance
    15.1Ratcheting-InducedStableCracking:ASynopsis
    15.2RatchetinginMetalFilms
    15.3CrackinginPassivationFilms
    15.4DesignModi?catio 
    15.5ChapterSummary
    References

    16DropTest
    16.1ControlledPulseDropTest
    16.1.1SimulationMethods
    16.1.2SimulationResults
    16.1.3ParametricStudy
    16.2FreeDrop
    16.2.1SimulatedDropTestProcedure
    16.2.2ModelingResultsandDiscussion
    16.3PortableElectronicDevicesDropTestandSimulation
    16.3.1TestSetUp
    16.3.2ModelingandSimulation
    16.3.3Results
    16.4ChapterSummary
    References

    17Electromigration
    17.1BasicMigrationFormulationandAlgorithm
    17.2ElectromigrationExamplesfromICDeviceandPackage
    17.2.1ASweatStructure
    17.2.2AFlip-chipCSPwithSolderBumps
    17.3ChapterSummary
    References

    18PopcorninginPlasticPackages
    18.1StatementofProblem
    18.2Analysis
    18.3ResultsandCompariso 
    18.3.1BehaviorofaDelaminatedPackageduetoPulsed
    Heating-Veri?cation
    18.3.2ConvergenceoftheTotalStrainEnergyReleaseRate
    18.3.3EffectofDelaminationSizeandVariousProcesses
    foraThickPackage
    18.3.4EffectofMoistureExpa ionCoef?cient
    18.4ChapterSummary
    References
    PartIVModernModelingandSimulationMethodologies

    19ClassicalMolecularDynamics
    19.1GeneralDescriptionofMolecularDynamicsMethod
    19.2MechanismofCarbonNanotubeWeldingontotheMetal
    19.2.1ComputationalMethodology
    19.2.2ResultsandDiscussion
    19.3Applicatio ofCar–ParrinelloMolecularDynamics
    19.3.1Car–ParrinelloSimulationofInitialGrowthStage
    ofGalliumNitrideonCarbonNanotube
    19.3.2EffectsofMechanicalDeformationonOuterSurface
    ReactivityofCarbonNanotubes
    19.3.3AdsorptionCon?gurationofMagnesiumonWurtzite
    GalliumNitrideSurfaceUsingFi t-principlesCalculatio 
    19.4Nano-weldingbyRFHeating
    19.5ChapterSummary
    References
    Appendix
    SummaryofContinuousMechanics
    Index
查看详情
相关图书 / 更多
微电子封装组件的建模和仿真:制造可靠性与测试
微电影创作教程(第2版)()
黄秋生 何敬 黄琼瑶 廖曼郁
微电子封装组件的建模和仿真:制造可靠性与测试
微电网规划与设计:简明指南(Microgrid Planning and Design:A Concise Guide)
[加拿大]哈桑·法翰吉(Hassan Farhangi);[加拿大]盖扎·乔斯(Geza Joos)
微电子封装组件的建模和仿真:制造可靠性与测试
微电影编剧与实践
牛绿林
微电子封装组件的建模和仿真:制造可靠性与测试
微电网接入配电网系统调试与验收规范
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局 联合发布
微电子封装组件的建模和仿真:制造可靠性与测试
微电子封装技术
周玉刚;张荣
微电子封装组件的建模和仿真:制造可靠性与测试
微电子工艺与装备技术
夏洋;解婧;陈宝钦
微电子封装组件的建模和仿真:制造可靠性与测试
微电子制造科学原理与工程技术(第四版)
[美]Stephen A. Campbell(斯蒂芬 · A. 坎贝尔)
微电子封装组件的建模和仿真:制造可靠性与测试
微电网群分层调控技术
吕天光;艾芊;郝然
微电子封装组件的建模和仿真:制造可靠性与测试
微电网建模与控制基础
马柯
微电子封装组件的建模和仿真:制造可靠性与测试
微电网储能技术原理及应用
贺达江;叶季蕾
微电子封装组件的建模和仿真:制造可靠性与测试
微电网智能滑模容错控制技术
肖玲斐
微电子封装组件的建模和仿真:制造可靠性与测试
微电影创作教程(第二版)
康玉东 编;孙茜芸
您可能感兴趣 / 更多
微电子封装组件的建模和仿真:制造可靠性与测试
健身理论与方法指导
刘胜、贾鹏、张先松 编
微电子封装组件的建模和仿真:制造可靠性与测试
自动化专业导论/高等学校“十三五”重点规划信息与自动化系列教材
刘胜、张兰勇 编
微电子封装组件的建模和仿真:制造可靠性与测试
中医外科学/全国高等医药教材建设研究会规划教材
刘胜、陈达灿 编
微电子封装组件的建模和仿真:制造可靠性与测试
根艺纵横
刘胜、刘晓 著
微电子封装组件的建模和仿真:制造可靠性与测试
素描基础教程·从结构到明暗:石膏头像
刘胜、张雷 著
微电子封装组件的建模和仿真:制造可靠性与测试
体育专业导论
刘胜、朱欣华、贾鹏 编著
微电子封装组件的建模和仿真:制造可靠性与测试
海洋潜器全方位推进器控制系统
刘胜、郑秀丽 著
微电子封装组件的建模和仿真:制造可靠性与测试
最优估计理论
刘胜、张红梅 著