Condensed Matter Physics

Condensed Matter Physics
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
出版社: Wiley
2010-11
版次: 1
ISBN: 9780470617984
装帧: 精装
开本: 大16开
纸张: 胶版纸
页数: 952页
2人买过
  • This  Second Edition  presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band th   Michael P. Marder, PhD, is the Associate Deanfor Science and Mathematics Education and Professor in theDepartment of Physics at the University of Texas at Austin, wherehe has been involved in a wide variety of theoretical, numerical,and experimental investigations. He specializes in the mechanics ofsolids, particularly the fracture of brittle materials. Dr. Marderhas carried out experimental studies of crack instabilities inplastics and rubber, and constructed analytical theories for howcracks move in crystals. Recently he has studied the way thatmembranes ripple due to changes in their geometry, and propertiesof frictional sliding at small length scales. Preface.

    References.

    I ATOMIC STRUCTURE.

    1 The Idea of Crystals.

    1.1 Introduction.

    1.2 Two-Dimensional Lattices.

    1.3 Symmetries.

    2 Three-Dimensional Lattices.

    2.1 Introduction.

    2.2 Monatomic Lattices.

    2.3 Compounds.

    2.4 Classification of Lattices by Symmetry.

    2.5 Symmetries of Lattices with Bases.

    2.6 Some Macroscopic Implications of Microscopic Symmetries . . ..

    3 Scattering and Structures.

    3.1 Introduction.

    3.2 Theory of Scattering from Crystals.

    3.3 Experimental Methods.

    3.4 Further Features of Scattering Experiments.

    3.5 Correlation Functions.

    4 Surfaces and Interfaces.

    4.1 Introduction.

    4.2 Geometry of Interfaces.

    4.3 Experimental Observation and Creation of Surfaces.

    5 Beyond Crystals.

    5.1 Introduction.

    5.2 Diffusion and Random Variables.

    5.3 Alloys.

    5.4 Simulations.

    5.5 Liquids.

    5.6 Glasses.

    5.7 Liquid Crystals.

    5.8 Polymers.

    5.9 Colloids and Diffusing-Wave Scattering.

    5.10 Quasicrystals.

    5.11 Fullerenes and nanotubes.

    II ELECTRONIC STRUCTURE.

    6 The Free Fermi Gas and Single Electron Model.

    6.1 Introduction.

    6.2 Starting Hamiltonian.

    6.3 Densities of States.

    6.4 Statistical Mechanics of Noninteracting Electrons.

    6.5 Sommerfeld Expansion.

    7 Non-Interacting Electrons in a Periodic Potential.

    7.1 Introduction.

    7.2 Translational Symmetry—Bloch's Theorem.

    7.3 Rotational Symmetry—Group Representations.

    8 Nearly Free and Tightly Bound Electrons.

    8.1 Introduction.

    8.2 Nearly Free Electrons.

    8.3 Brillouin Zones.

    8.4 Tightly Bound Electrons.

    9 Electron-Electron Interactions.

    9.1 Introduction.

    9.2 Hartree and Hartree-Fock Equations.

    9.3 Density Functional Theory.

    9.4 Quantum Monte Carlo.

    9.5 Kohn-Sham Equations.

    10 Realistic Calculations in Solids.

    10.1 Introduction.

    10.2 Numerical Methods.

    10.3 Definition of Metals, Insulators, and Semiconductors.

    10.4 Brief Survey of the Periodic Table.

    III MECHANICAL PROPERTIES.

    11 Cohesion of Solids.

    11.1 Introduction.

    11.2 Noble Gases.

    11.3 Ionic Crystals.

    11.4 Metals.

    11.5 Band Structure Energy.

    11.6 Hydrogen-Bonded Solids.

    11.7 Cohesive Energy from Band Calculations.

    11.8 Classical Potentials.

    12 Elasticity.

    12.1 Introduction.

    12.2 Nonlinear Elasticity.

    12.3 Linear Elasticity.

    12.4 Other Constitutive Laws.

    13 Phonons.

    13.1 Introduction.

    13.2 Vibrations of a Classical Lattice.

    13.3 Vibrations of a Quantum-Mechanical Lattice.

    13.4 Inelastic Scattering from Phonons.

    13.5 The M?ssbauer Effect.

    14 Dislocations and Cracks.

    14.1 Introduction.

    14.2 Dislocations.

    14.3 Two-Dimensional Dislocations and Hexatic Phases.

    14.4 Cracks.

    15 Fluid Mechanics.

    15.1 Introduction.

    15.2 Newtonian Fluids.

    15.3 Polymeric Solutions.

    15.4 Plasticity.

    15.5 Superfluida 4He.

    IV ELECTRON TRANSPORT.

    16 Dynamics of Bloch Electrons.

    16.1 Introduction.

    16.2 Semiclassical Electron Dynamics.

    16.3 Noninteracting Electrons in an Electric Field.

    16.4 Semiclassical Equations from Wave Packets.

    16.5 Quantizing Semiclassical Dynamics.

    17 Transport Phenomena and Fermi Liquid Theory.

    17.1 Introduction.

    17.2 Boltzmann Equation.

    17.3 Transport Symmetries.

    17.4 Thermoelectric Phenomena.

    17.5 Fermi Liquid Theory.

    18 Microscopic Theories of Conduction.

    18.1 Introduction.

    18.2 Weak Scattering Theory of Conductivity.

    18.3 Metal-Insulator Transitions in Disordered Solids.

    18.4 Compensated Impurity Scattering and Green's Functions.

    18.5 Localization.

    18.6 Luttinger Liquids.

    19 Electronics.

    19.1 Introduction.

    19.2 Metal Interfaces.

    19.3 Semiconductors.

    19.4 Diodes and Transistors.

    19.5 Inversion Layers.

    V OPTICAL PROPERTIES.

    20 Phenomenological Theory.

    20.1 Introduction.

    20.2 Maxwell's Equations.

    20.3 Kramers-Kronig Relations.

    20.4 The Kubo-Greenwood Formula.

    21 Optical Properties of Semiconductors.

    21.1 Introduction.

    21.2 Cyclotron Resonance.

    21.3 Semiconductor Band Gaps.

    21.4 Excitons.

    21.5 Optoelectronics.

    22 Optical Properties of Insulators.

    22.1 Introduction.

    22.2 Polarization.

    22.3 Optical Modes in Ionic Crystals.

    22.4 Point Defects and Color Centers.

    23 Optical Properties of Metals and Inelastic Scattering.

    23.1 Introduction.

    23.2 Metals at Low Frequencies.

    23.3 Plasmons.

    23.4 Interband Transitions.

    23.5 Brillouin and Raman Scattering.

    23.6 Photoemission.

    VI MAGNETISM.

    24 Classical Theories of Magnetism and Ordering.

    24.1 Introduction.

    24.2 Three Views of Magnetism.

    24.3 Magnetic Dipole Moments.

    24.4 Mean Field Theory and the Ising Model.

    24.5 Other Order-Disorder Transitions.

    24.6 Critical Phenomena.

    25 Magnetism of Ions and Electrons.

    25.1 Introduction.

    25.2 Atomic Magnetism.

    25.3 Magnetism of the Free-Electron Gas.

    25.4 Tightly Bound Electrons in Magnetic Fields.

    25.5 Quantum Hall Effect.

    26 Quantum Mechanics of Interacting Magnetic Moments.

    26.1 Introduction.

    26.2 Origin of Ferromagnetism.

    26.3 Heisenberg Model.

    26.4 Ferromagnetism in Transition Metals.

    26.5 Spintronics.

    26.6 Kondo Effect.

    26.7 Hubbard Model.

    27 Superconductivity.

    27.1 Introduction.

    27.2 Phenomenology of Superconductivity.

    27.3 Microscopic Theory of Superconductivity.

    APPENDICES.

    A Lattice Sums and Fourier Transforms.

    A.1 One-Dimensional Sum.

    A.2 Area Under Peaks.

    A.3 Three-Dimensional Sum.

    A.4 Discrete Case.

    A.5 Convolution.

    A.6 Using the Fast Fourier Transform.

    B Variational Techniques.

    B.1 Functionals and Functional Derivatives.

    B.2 Time-Independent Schr?dinger Equation.

    B.3 Time-Dependent Schr?dinger Equation.

    B.4 Method of Steepest Descent.

    C Second Quantization.

    C.1 Rules.

    C.2 Derivations.

    Index.
  • 内容简介:
    This  Second Edition  presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band th
  • 作者简介:
      Michael P. Marder, PhD, is the Associate Deanfor Science and Mathematics Education and Professor in theDepartment of Physics at the University of Texas at Austin, wherehe has been involved in a wide variety of theoretical, numerical,and experimental investigations. He specializes in the mechanics ofsolids, particularly the fracture of brittle materials. Dr. Marderhas carried out experimental studies of crack instabilities inplastics and rubber, and constructed analytical theories for howcracks move in crystals. Recently he has studied the way thatmembranes ripple due to changes in their geometry, and propertiesof frictional sliding at small length scales.
  • 目录:
    Preface.

    References.

    I ATOMIC STRUCTURE.

    1 The Idea of Crystals.

    1.1 Introduction.

    1.2 Two-Dimensional Lattices.

    1.3 Symmetries.

    2 Three-Dimensional Lattices.

    2.1 Introduction.

    2.2 Monatomic Lattices.

    2.3 Compounds.

    2.4 Classification of Lattices by Symmetry.

    2.5 Symmetries of Lattices with Bases.

    2.6 Some Macroscopic Implications of Microscopic Symmetries . . ..

    3 Scattering and Structures.

    3.1 Introduction.

    3.2 Theory of Scattering from Crystals.

    3.3 Experimental Methods.

    3.4 Further Features of Scattering Experiments.

    3.5 Correlation Functions.

    4 Surfaces and Interfaces.

    4.1 Introduction.

    4.2 Geometry of Interfaces.

    4.3 Experimental Observation and Creation of Surfaces.

    5 Beyond Crystals.

    5.1 Introduction.

    5.2 Diffusion and Random Variables.

    5.3 Alloys.

    5.4 Simulations.

    5.5 Liquids.

    5.6 Glasses.

    5.7 Liquid Crystals.

    5.8 Polymers.

    5.9 Colloids and Diffusing-Wave Scattering.

    5.10 Quasicrystals.

    5.11 Fullerenes and nanotubes.

    II ELECTRONIC STRUCTURE.

    6 The Free Fermi Gas and Single Electron Model.

    6.1 Introduction.

    6.2 Starting Hamiltonian.

    6.3 Densities of States.

    6.4 Statistical Mechanics of Noninteracting Electrons.

    6.5 Sommerfeld Expansion.

    7 Non-Interacting Electrons in a Periodic Potential.

    7.1 Introduction.

    7.2 Translational Symmetry—Bloch's Theorem.

    7.3 Rotational Symmetry—Group Representations.

    8 Nearly Free and Tightly Bound Electrons.

    8.1 Introduction.

    8.2 Nearly Free Electrons.

    8.3 Brillouin Zones.

    8.4 Tightly Bound Electrons.

    9 Electron-Electron Interactions.

    9.1 Introduction.

    9.2 Hartree and Hartree-Fock Equations.

    9.3 Density Functional Theory.

    9.4 Quantum Monte Carlo.

    9.5 Kohn-Sham Equations.

    10 Realistic Calculations in Solids.

    10.1 Introduction.

    10.2 Numerical Methods.

    10.3 Definition of Metals, Insulators, and Semiconductors.

    10.4 Brief Survey of the Periodic Table.

    III MECHANICAL PROPERTIES.

    11 Cohesion of Solids.

    11.1 Introduction.

    11.2 Noble Gases.

    11.3 Ionic Crystals.

    11.4 Metals.

    11.5 Band Structure Energy.

    11.6 Hydrogen-Bonded Solids.

    11.7 Cohesive Energy from Band Calculations.

    11.8 Classical Potentials.

    12 Elasticity.

    12.1 Introduction.

    12.2 Nonlinear Elasticity.

    12.3 Linear Elasticity.

    12.4 Other Constitutive Laws.

    13 Phonons.

    13.1 Introduction.

    13.2 Vibrations of a Classical Lattice.

    13.3 Vibrations of a Quantum-Mechanical Lattice.

    13.4 Inelastic Scattering from Phonons.

    13.5 The M?ssbauer Effect.

    14 Dislocations and Cracks.

    14.1 Introduction.

    14.2 Dislocations.

    14.3 Two-Dimensional Dislocations and Hexatic Phases.

    14.4 Cracks.

    15 Fluid Mechanics.

    15.1 Introduction.

    15.2 Newtonian Fluids.

    15.3 Polymeric Solutions.

    15.4 Plasticity.

    15.5 Superfluida 4He.

    IV ELECTRON TRANSPORT.

    16 Dynamics of Bloch Electrons.

    16.1 Introduction.

    16.2 Semiclassical Electron Dynamics.

    16.3 Noninteracting Electrons in an Electric Field.

    16.4 Semiclassical Equations from Wave Packets.

    16.5 Quantizing Semiclassical Dynamics.

    17 Transport Phenomena and Fermi Liquid Theory.

    17.1 Introduction.

    17.2 Boltzmann Equation.

    17.3 Transport Symmetries.

    17.4 Thermoelectric Phenomena.

    17.5 Fermi Liquid Theory.

    18 Microscopic Theories of Conduction.

    18.1 Introduction.

    18.2 Weak Scattering Theory of Conductivity.

    18.3 Metal-Insulator Transitions in Disordered Solids.

    18.4 Compensated Impurity Scattering and Green's Functions.

    18.5 Localization.

    18.6 Luttinger Liquids.

    19 Electronics.

    19.1 Introduction.

    19.2 Metal Interfaces.

    19.3 Semiconductors.

    19.4 Diodes and Transistors.

    19.5 Inversion Layers.

    V OPTICAL PROPERTIES.

    20 Phenomenological Theory.

    20.1 Introduction.

    20.2 Maxwell's Equations.

    20.3 Kramers-Kronig Relations.

    20.4 The Kubo-Greenwood Formula.

    21 Optical Properties of Semiconductors.

    21.1 Introduction.

    21.2 Cyclotron Resonance.

    21.3 Semiconductor Band Gaps.

    21.4 Excitons.

    21.5 Optoelectronics.

    22 Optical Properties of Insulators.

    22.1 Introduction.

    22.2 Polarization.

    22.3 Optical Modes in Ionic Crystals.

    22.4 Point Defects and Color Centers.

    23 Optical Properties of Metals and Inelastic Scattering.

    23.1 Introduction.

    23.2 Metals at Low Frequencies.

    23.3 Plasmons.

    23.4 Interband Transitions.

    23.5 Brillouin and Raman Scattering.

    23.6 Photoemission.

    VI MAGNETISM.

    24 Classical Theories of Magnetism and Ordering.

    24.1 Introduction.

    24.2 Three Views of Magnetism.

    24.3 Magnetic Dipole Moments.

    24.4 Mean Field Theory and the Ising Model.

    24.5 Other Order-Disorder Transitions.

    24.6 Critical Phenomena.

    25 Magnetism of Ions and Electrons.

    25.1 Introduction.

    25.2 Atomic Magnetism.

    25.3 Magnetism of the Free-Electron Gas.

    25.4 Tightly Bound Electrons in Magnetic Fields.

    25.5 Quantum Hall Effect.

    26 Quantum Mechanics of Interacting Magnetic Moments.

    26.1 Introduction.

    26.2 Origin of Ferromagnetism.

    26.3 Heisenberg Model.

    26.4 Ferromagnetism in Transition Metals.

    26.5 Spintronics.

    26.6 Kondo Effect.

    26.7 Hubbard Model.

    27 Superconductivity.

    27.1 Introduction.

    27.2 Phenomenology of Superconductivity.

    27.3 Microscopic Theory of Superconductivity.

    APPENDICES.

    A Lattice Sums and Fourier Transforms.

    A.1 One-Dimensional Sum.

    A.2 Area Under Peaks.

    A.3 Three-Dimensional Sum.

    A.4 Discrete Case.

    A.5 Convolution.

    A.6 Using the Fast Fourier Transform.

    B Variational Techniques.

    B.1 Functionals and Functional Derivatives.

    B.2 Time-Independent Schr?dinger Equation.

    B.3 Time-Dependent Schr?dinger Equation.

    B.4 Method of Steepest Descent.

    C Second Quantization.

    C.1 Rules.

    C.2 Derivations.

    Index.
查看详情
其他版本 / 全部 (1)
目前没有书店销售此书
相关图书 / 更多
Condensed Matter Physics
Condensed Matter in a Nutshell
Gerald D. Mahan
Condensed Matter Physics
Condensed Matter Field Theory
Alexander Altland;Ben D. Simons
您可能感兴趣 / 更多
Condensed Matter Physics
随机算子:量子光谱和动力学上的无序效应(影印版)
Michael Aizenman;Si
Condensed Matter Physics
算法伦理:社会感知算法设计的科学
Michael Kearns,Aaron Roth
Condensed Matter Physics
男子汉的诗学(汉译人类学名著丛书)
Michael Herzfeld
Condensed Matter Physics
你好,长安(英文)
Michael、A.Stone 著
Condensed Matter Physics
第二语言需求分析(当代国外语言学与应用语言学文库)(升级版)
Michael H. Long
Condensed Matter Physics
萨满教、殖民主义与野人:关于恐惧与治疗的研究(汉译人类学名著丛书)
Michael Taussig
Condensed Matter Physics
RHCSA/RHCE Red Hat Linux Certification Study Guide (Exams Ex200 & Ex300)
Michael Jang;Alessandro Orsaria
Condensed Matter Physics
Betty Bunny Wants Everything
Michael Kaplan 著;Stephane Jorisch 绘
Condensed Matter Physics
The Handbook of Language Teaching
Michael H. Long;Catherine J. Doughty
Condensed Matter Physics
Echo Park 回声公园
Michael Connelly 著
Condensed Matter Physics
THE FUTURE JUST HAPPENED
Michael Lewis 著
Condensed Matter Physics
男孩和盐Boy Who Was Generous With Salt
Michael Hays 著;Corinne Demas