孤立子理论中的哈密顿方法

孤立子理论中的哈密顿方法
分享
扫描下方二维码分享到微信
打开微信,点击右上角”+“,
使用”扫一扫“即可将网页分享到朋友圈。
作者: (Ludwig D.Faddeev)
2013-03
版次: 1
ISBN: 9787510058264
定价: 89.00
装帧: 平装
开本: 24开
纸张: 胶版纸
页数: 592页
正文语种: 英语
分类: 自然科学
31人买过
  •   ThebookisbasedontheHamiltonianinterpretationofthemethod,hencethetitle.MethodsofdifferentialgeometryandHamiitonianformalisminparticularareverypopularinmodernmathematicalphysics.ItispreciselythegeneralHamiltonianformalismthatpresentstheinversescatteringmethodinitsmostelegantform.Moreover,theHamiltonianformalismprovidesalinkbetweenclassicalandquantummechanics.Sothebookisnotonlyanintroductiontotheclassicalsolitontheorybutalsothegroundworkforthequantumtheoryofsolitons,tobediscussedinanothervolume.
      Thebookisaddressedtospecialistsinmathematicalphysics.Thishasdeterminedthechoiceofmaterialandthelevelofmathematicalrigour.Wehopethatitwillalsobeofinteresttomathematiciansofotherspecialitiesandtotheoreticalphysicistsaswell.Still,beingamathematicaltreatiseitdoesnotcontainapplicationsofsolitontheorytospecificphysicalphenomena. IntroductionReferences
    PartOneTheNonlinearSchrodingerEquation(NSModel)
    ChapterⅠZeroCurvatureRepresentation
    1.FormulationoftheNSModel
    2.ZeroCurvatureCondition
    3.PropertiesoftheMonodromyMatrixintheQuasi-PeriodicCase
    4.LocalIntegralsoftheMotion
    5.TheMonodromyMatrixintheRapidlyDecreasingCase
    6.AnalyticPropertiesofTransitionCoefficients
    7.TheDynamicsofTransitionCoefficients
    8.TheCaseofFiniteDensity.JostSolutions
    9.TheCaseofFiniteDensity.TransitionCoefficients
    10.TheCaseofFiniteDensity.TimeDynamicsandIntegralsoftheMotion
    1.NotesandReferences
    References
    ChapterⅡTheRiemannProblem
    1.TheRapidlyDecreasingCase.FormulationoftheRiemannProblem
    2.TheRapidlyDecreasingCase.AnalysisoftheRiemannProblem
    3.ApplicationoftheInverseScatteringProblemtotheNSModel
    4.RelationshipBetweentheRiemannProblemMethodandtheGelfand-Levitan-MarchenkoIntegralEquationsFormulation
    5.TheRapidlyDecreasingCase.SolitonSolutions
    6.SolutionoftheInverseProblemintheCaseofFiniteDensity.TheRiemannProblemMethod
    7.SolutionoftheInverseProblemintheCaseofFiniteDensity.TheGelfand-Levitan-MarchenkoFormulation
    8.SolitonSolutionsintheCaseofFiniteDensity
    9.NotesandReferencesReferences
    ChapterⅢTheHamiltonianFormulation
    1.FundamentalPoissonBracketsandthe/"-Matrix
    2.PoissonCommutativityoftheMotionIntegralsintheQuasi-PeriodicCase
    3.DerivationoftheZeroCurvatureRepresentationfromtheFundamentalPoissonBrackets
    4.IntegralsoftheMotionintheRapidlyDecreasingCaseandintheCaseofFiniteDensity
    5.TheA-OperatorandaHierarchyofPoissonStructures
    6.PoissonBracketsofTransitionCoefficientsintheRapidlyDecreasingCase
    7.Action-AngleVariablesintheRapidlyDecreasingCase
    8.SolitonDynamicsfromtheHamiltonianPointofView
    9.CompleteIntegrabilityintheCaseofFiniteDensity
    10.NotesandReferences
    References

    PartTwoGeneralTheoryofIntegrableEvolutionEquations
    ChapterⅠBasicExamplesandTheirGeneralProperties
    1.FormulationoftheBasicContinuousModels
    2.ExamplesofLatticeModels
    3.ZeroCurvatureRepresentation'saMethodforConstructingIntegrableEquations
    4.GaugeEquivalenceoftheNSModel(#=-1)andtheHMModel
    5.HamiltonianFormulationoftheChiralFieldEquationsandRelatedModels
    6.TheRiemannProblemasaMethodforConstructingSolutionsofIntegrableEquations
    7.ASchemeforConstructingtheGeneralSolutionoftheZeroCurvatureEquation.ConcludingRemarksonIntegrableEquations
    8.NotesandReferences
    References
    ChapterⅡFundamentalContinuousModels
    1.TheAuxiliaryLinearProblemfortheHMModel
    2.TheInverseProblemfortheHMModel
    3.HamiltonianFormulationoftheHMModel4.TheAuxiliaryLinearProblemfortheSGModel
    5.TheInverseProblemfortheSGModel
    6.HamiltonianFormulationoftheSGModel
    ChapterⅢFundamentalModelsontheLattice
    ChapterⅣLie-AlgebraicApproachtotheClassificationandAnalysisofIntegrableModelsConclusionListofSymbolsIndex
    ……
    Conclusion
    ListofSymbols
    Index
  • 内容简介:
      ThebookisbasedontheHamiltonianinterpretationofthemethod,hencethetitle.MethodsofdifferentialgeometryandHamiitonianformalisminparticularareverypopularinmodernmathematicalphysics.ItispreciselythegeneralHamiltonianformalismthatpresentstheinversescatteringmethodinitsmostelegantform.Moreover,theHamiltonianformalismprovidesalinkbetweenclassicalandquantummechanics.Sothebookisnotonlyanintroductiontotheclassicalsolitontheorybutalsothegroundworkforthequantumtheoryofsolitons,tobediscussedinanothervolume.
      Thebookisaddressedtospecialistsinmathematicalphysics.Thishasdeterminedthechoiceofmaterialandthelevelofmathematicalrigour.Wehopethatitwillalsobeofinteresttomathematiciansofotherspecialitiesandtotheoreticalphysicistsaswell.Still,beingamathematicaltreatiseitdoesnotcontainapplicationsofsolitontheorytospecificphysicalphenomena.
  • 目录:
    IntroductionReferences
    PartOneTheNonlinearSchrodingerEquation(NSModel)
    ChapterⅠZeroCurvatureRepresentation
    1.FormulationoftheNSModel
    2.ZeroCurvatureCondition
    3.PropertiesoftheMonodromyMatrixintheQuasi-PeriodicCase
    4.LocalIntegralsoftheMotion
    5.TheMonodromyMatrixintheRapidlyDecreasingCase
    6.AnalyticPropertiesofTransitionCoefficients
    7.TheDynamicsofTransitionCoefficients
    8.TheCaseofFiniteDensity.JostSolutions
    9.TheCaseofFiniteDensity.TransitionCoefficients
    10.TheCaseofFiniteDensity.TimeDynamicsandIntegralsoftheMotion
    1.NotesandReferences
    References
    ChapterⅡTheRiemannProblem
    1.TheRapidlyDecreasingCase.FormulationoftheRiemannProblem
    2.TheRapidlyDecreasingCase.AnalysisoftheRiemannProblem
    3.ApplicationoftheInverseScatteringProblemtotheNSModel
    4.RelationshipBetweentheRiemannProblemMethodandtheGelfand-Levitan-MarchenkoIntegralEquationsFormulation
    5.TheRapidlyDecreasingCase.SolitonSolutions
    6.SolutionoftheInverseProblemintheCaseofFiniteDensity.TheRiemannProblemMethod
    7.SolutionoftheInverseProblemintheCaseofFiniteDensity.TheGelfand-Levitan-MarchenkoFormulation
    8.SolitonSolutionsintheCaseofFiniteDensity
    9.NotesandReferencesReferences
    ChapterⅢTheHamiltonianFormulation
    1.FundamentalPoissonBracketsandthe/"-Matrix
    2.PoissonCommutativityoftheMotionIntegralsintheQuasi-PeriodicCase
    3.DerivationoftheZeroCurvatureRepresentationfromtheFundamentalPoissonBrackets
    4.IntegralsoftheMotionintheRapidlyDecreasingCaseandintheCaseofFiniteDensity
    5.TheA-OperatorandaHierarchyofPoissonStructures
    6.PoissonBracketsofTransitionCoefficientsintheRapidlyDecreasingCase
    7.Action-AngleVariablesintheRapidlyDecreasingCase
    8.SolitonDynamicsfromtheHamiltonianPointofView
    9.CompleteIntegrabilityintheCaseofFiniteDensity
    10.NotesandReferences
    References

    PartTwoGeneralTheoryofIntegrableEvolutionEquations
    ChapterⅠBasicExamplesandTheirGeneralProperties
    1.FormulationoftheBasicContinuousModels
    2.ExamplesofLatticeModels
    3.ZeroCurvatureRepresentation'saMethodforConstructingIntegrableEquations
    4.GaugeEquivalenceoftheNSModel(#=-1)andtheHMModel
    5.HamiltonianFormulationoftheChiralFieldEquationsandRelatedModels
    6.TheRiemannProblemasaMethodforConstructingSolutionsofIntegrableEquations
    7.ASchemeforConstructingtheGeneralSolutionoftheZeroCurvatureEquation.ConcludingRemarksonIntegrableEquations
    8.NotesandReferences
    References
    ChapterⅡFundamentalContinuousModels
    1.TheAuxiliaryLinearProblemfortheHMModel
    2.TheInverseProblemfortheHMModel
    3.HamiltonianFormulationoftheHMModel4.TheAuxiliaryLinearProblemfortheSGModel
    5.TheInverseProblemfortheSGModel
    6.HamiltonianFormulationoftheSGModel
    ChapterⅢFundamentalModelsontheLattice
    ChapterⅣLie-AlgebraicApproachtotheClassificationandAnalysisofIntegrableModelsConclusionListofSymbolsIndex
    ……
    Conclusion
    ListofSymbols
    Index
查看详情
您可能感兴趣 / 更多
孤立子理论中的哈密顿方法
抄工与学者:希腊、拉丁文献传播史 西方古典学研究系列
L.D.雷诺兹;N.G.威尔逊
孤立子理论中的哈密顿方法
神契幻奇谭(13)
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭(14)
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭11
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭10
L.DART 著
孤立子理论中的哈密顿方法
麒麟儿
L.DART
孤立子理论中的哈密顿方法
神契幻奇谭7
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭-6
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭 零
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭⑤
L.DART 著
孤立子理论中的哈密顿方法
神契幻奇谭4
L.DART 著
孤立子理论中的哈密顿方法
神契 幻奇谭3
L.DART 著