最优因析设计理论
出版时间:
2023-09
版次:
1
ISBN:
9787030776686
定价:
98.00
装帧:
其他
开本:
其他
页数:
207页
字数:
280千字
-
试验设计是近代科学发展的重要基础理论之一。它研究不同条件下各种试验的很优设计准则、构造和分析的理论与方法。为适应现代试验的需要,作者于2006年开始建立了一个新的很优因子分析设计理论,包括很优性准则、很优设计构造,以及他们在各种不同设计类中的推广。本书首先给出近代试验设计,主要是多因子试验设计的基本知识和数学基础,接着从二水平对称因子设计开始介绍了该理论的一些基本概念,包括AENP的提出、GMC准则的引进、GMC设计的构造等。书中对由AENP建立的GMC准则得到的设计与由WLP建立的MA型准则得到的两类设计的优良性进行了详细比较。利用AENP理论,还证明了过去已有的两个准则MA和MEC(优选估计容量准则)得到的很优设计在只关心低阶效应时是等价的。随后的数章分别介绍了GMC理论在各类设计中的推广和应用,包括分区组因析设计、裂区设计、混合水平因析设计、非正规因析设计、多水平因析设计、折衷设计、稳健参数设计,建立了各种情形的GMC准则。书中还给出了大量的很优设计表供实际应用。 Contents
“统计与数据科学丛书”序 i
Preface iii
1 Introduction 1
1.1 Factorial Designs and Factorial Effects 1
1.2 Fractional Factorial Designs 4
1.3 Optimality Criteria 9
1.3.1 Maximum Resolution Criterion 9
1.3.2 Minimum Aberration Criterion 10
1.3.3 Clear Effects Criterion 11
1.3.4 Maximum Estimation Capacity Criterion 12
1.4 Organization of the Book 13
2 General Minimum Lower-Order Confounding Criterion for 2n–m Designs 15
2.1 GMC Criterion 15
2.2 Relationship with MA Criterion 20
2.3 Relationship with CE Criterion 23
2.4 Relationship with MEC Criterion 25
Appendix A: GMC 2n–m Designs with m ? 4 26
Appendix B: GMC 2n–m Designs with 16, 32, and 64 Runs 28
3 General Minimum Lower-Order Confounding 2n–m Designs 31
3.1 Some Preparation 31
3.1.1 Several Useful Results 31
3.1.2 Structure of Resolution IV Design with N /4 + 1 ? n ? N /2 34
3.2 GMC 2n–m Designs with n ? 5N /16 + 1 39
3.2.1 Main Results and Examples 39
3.2.2 Proof of Theorem 3.10 40
3.3 GMC 2n–m Designs with 9N /32 + 1 ? n ? 5N /16 46
3.3.1 Main Results and Example 46 3.3.2 Outline of the Proof of Theorem 3.16 46
3.4 GMC 2n–m Designs with N /4 + 1 ? n ? 9N /32 47
3.4.1 Some Properties of MaxC2 2n–m Designs with n = N /4 + 1 47
3.4.2 GMC 2n–m Designs with N /4 + 1 < n ? 9N /32 49
3.4.3 Outline of the Proof of Theorem 3.23 50
3.5 When Do the MA and GMC Designs Differ? 51
4 General Minimum Lower-Order Confounding Blocked Designs 53
4.1 Two Kinds of Blocking Problems 53
4.2 GMC Criteria for Blocked Designs 54
4.3 Construction of B-GMC Designs 57
4.3.1 B-GMC 2n–m : 2r Designs with 5N /16 + 1 ? n ? N /2 58
4.3.2 B-GMC 2n–m : 2r Designs with n > N /2 63
4.3.3 Weak B-GMC 2n–m : 2r Designs 67
4.4 Construction of B1-GMC Designs 69
4.4.1 B1-GMC 2n–m : 2r Designs with n ? 5N /16 + 1 70
4.4.2 B1-GMC 2n–m : 2r Designs with 9N /32 + 1 ? n ? 5N /16 72
4.4.3 B1-GMC 2n–m : 2r Designs with N /4 + 1 ? n ? 9N /32 73
4.5 Construction of B2-GMC Designs 75
4.5.1 B2-GMC 2n–m : 2r Designs with n ? 5N /16 + 1 76
4.5.2 B2-GMC 2n–m : 2r Designs with N /4 + 1 ? n ? 5N /16 78
5 Factor Aliased and Blocked Factor Aliased Effect-Number Patterns 80
5.1 Factor Aliased Effect-Number Pattern of GMC Designs 80
5.1.1 Factor Aliased Effect-Number Pattern 80
5.1.2 The F-AENP of GMC Designs 83
5.1.3 Application of the F-AENP 87
5.2 Blocked Factor Aliased Effect-Number Pattern of B1-GMC Designs 89
5.2.1 Blocked Factor Aliased Effect-Number Pattern 89
5.2.2 The B-F-AENP of B1-GMC Designs 92
5.2.3 Applications of the B-F-AENP 99 6 General Minimum Lower-Order Confounding Split-plot Designs 102
6.1 Introduction 102
6.2 GMC Criterion for Split-plot Designs 103
6.2.1 Comparison with MA-MSA-FFSP Criterion 105
6.2.2 Comparison with Clear Effects Criterion 110
6.3 WP-GMC Split-plot Designs 111
6.3.1 WP-GMC Criterion for Split-plot Designs 111
6.3.2 Construction of WP-GMC Split-plot Designs 114
7 Partial Aliased Effect-Number Pattern and Compromise Designs 119
7.1 Introduction 119
7.2 Partial Aliased Effect-Number Pattern 121
7.3 Some General Results of Compromise Designs 124
7.4 Class One Compromise Designs 126
7.4.1 Largest Class One Clear Compromise Designs and Their Construction 126
7.4.2 Supremum f ?(q, n) and Construction of Largest Class One CCDs 127
7.4.3 Supremum n?(q, f ) and Construction of Largest Class One CCDs 130
7.4.4 Largest Class One Strongly Clear Compromise Designs 133
7.4.5 Class One General Optimal Compromise Designs 137
7.5 Discussion 141
8 General Minimum Lower-Order Confounding Criteria for Robust Parameter Designs 147 8.1 Introduction 147
8.2 Selection of Optimal Regular Robust Parameter Designs 149
8.3 An Algorithm for Searching Optimal Arrays 155
9 General Minimum Lower-Order Confounding Criterion for sn–m Designs 162
9.1 Introduction to sn–m Designs 162
9.2 GMC Criterion and Relationship with Other Criteria 166
9.3 GMC sn–m Designs Using Complementary Designs 174
9.4 B-GMC Criterion for Blocked sn–m Designs 178
10 General Minimum Lower-Order Confounding Criterion for Orthogonal Arrays 182
10.1 Introduction 182
10.2 ANOVA Models and Confounding Between Effects 183
10.3 Generalized AENP and GMC Criterion 187
10.4 Relationship with Other Criteria 189
10.5 Some G-GMC Designs 193
References 196
Index 206
“统计与数据科学丛书”已出版书目 208
-
内容简介:
试验设计是近代科学发展的重要基础理论之一。它研究不同条件下各种试验的很优设计准则、构造和分析的理论与方法。为适应现代试验的需要,作者于2006年开始建立了一个新的很优因子分析设计理论,包括很优性准则、很优设计构造,以及他们在各种不同设计类中的推广。本书首先给出近代试验设计,主要是多因子试验设计的基本知识和数学基础,接着从二水平对称因子设计开始介绍了该理论的一些基本概念,包括AENP的提出、GMC准则的引进、GMC设计的构造等。书中对由AENP建立的GMC准则得到的设计与由WLP建立的MA型准则得到的两类设计的优良性进行了详细比较。利用AENP理论,还证明了过去已有的两个准则MA和MEC(优选估计容量准则)得到的很优设计在只关心低阶效应时是等价的。随后的数章分别介绍了GMC理论在各类设计中的推广和应用,包括分区组因析设计、裂区设计、混合水平因析设计、非正规因析设计、多水平因析设计、折衷设计、稳健参数设计,建立了各种情形的GMC准则。书中还给出了大量的很优设计表供实际应用。
-
目录:
Contents
“统计与数据科学丛书”序 i
Preface iii
1 Introduction 1
1.1 Factorial Designs and Factorial Effects 1
1.2 Fractional Factorial Designs 4
1.3 Optimality Criteria 9
1.3.1 Maximum Resolution Criterion 9
1.3.2 Minimum Aberration Criterion 10
1.3.3 Clear Effects Criterion 11
1.3.4 Maximum Estimation Capacity Criterion 12
1.4 Organization of the Book 13
2 General Minimum Lower-Order Confounding Criterion for 2n–m Designs 15
2.1 GMC Criterion 15
2.2 Relationship with MA Criterion 20
2.3 Relationship with CE Criterion 23
2.4 Relationship with MEC Criterion 25
Appendix A: GMC 2n–m Designs with m ? 4 26
Appendix B: GMC 2n–m Designs with 16, 32, and 64 Runs 28
3 General Minimum Lower-Order Confounding 2n–m Designs 31
3.1 Some Preparation 31
3.1.1 Several Useful Results 31
3.1.2 Structure of Resolution IV Design with N /4 + 1 ? n ? N /2 34
3.2 GMC 2n–m Designs with n ? 5N /16 + 1 39
3.2.1 Main Results and Examples 39
3.2.2 Proof of Theorem 3.10 40
3.3 GMC 2n–m Designs with 9N /32 + 1 ? n ? 5N /16 46
3.3.1 Main Results and Example 46 3.3.2 Outline of the Proof of Theorem 3.16 46
3.4 GMC 2n–m Designs with N /4 + 1 ? n ? 9N /32 47
3.4.1 Some Properties of MaxC2 2n–m Designs with n = N /4 + 1 47
3.4.2 GMC 2n–m Designs with N /4 + 1 < n ? 9N /32 49
3.4.3 Outline of the Proof of Theorem 3.23 50
3.5 When Do the MA and GMC Designs Differ? 51
4 General Minimum Lower-Order Confounding Blocked Designs 53
4.1 Two Kinds of Blocking Problems 53
4.2 GMC Criteria for Blocked Designs 54
4.3 Construction of B-GMC Designs 57
4.3.1 B-GMC 2n–m : 2r Designs with 5N /16 + 1 ? n ? N /2 58
4.3.2 B-GMC 2n–m : 2r Designs with n > N /2 63
4.3.3 Weak B-GMC 2n–m : 2r Designs 67
4.4 Construction of B1-GMC Designs 69
4.4.1 B1-GMC 2n–m : 2r Designs with n ? 5N /16 + 1 70
4.4.2 B1-GMC 2n–m : 2r Designs with 9N /32 + 1 ? n ? 5N /16 72
4.4.3 B1-GMC 2n–m : 2r Designs with N /4 + 1 ? n ? 9N /32 73
4.5 Construction of B2-GMC Designs 75
4.5.1 B2-GMC 2n–m : 2r Designs with n ? 5N /16 + 1 76
4.5.2 B2-GMC 2n–m : 2r Designs with N /4 + 1 ? n ? 5N /16 78
5 Factor Aliased and Blocked Factor Aliased Effect-Number Patterns 80
5.1 Factor Aliased Effect-Number Pattern of GMC Designs 80
5.1.1 Factor Aliased Effect-Number Pattern 80
5.1.2 The F-AENP of GMC Designs 83
5.1.3 Application of the F-AENP 87
5.2 Blocked Factor Aliased Effect-Number Pattern of B1-GMC Designs 89
5.2.1 Blocked Factor Aliased Effect-Number Pattern 89
5.2.2 The B-F-AENP of B1-GMC Designs 92
5.2.3 Applications of the B-F-AENP 99 6 General Minimum Lower-Order Confounding Split-plot Designs 102
6.1 Introduction 102
6.2 GMC Criterion for Split-plot Designs 103
6.2.1 Comparison with MA-MSA-FFSP Criterion 105
6.2.2 Comparison with Clear Effects Criterion 110
6.3 WP-GMC Split-plot Designs 111
6.3.1 WP-GMC Criterion for Split-plot Designs 111
6.3.2 Construction of WP-GMC Split-plot Designs 114
7 Partial Aliased Effect-Number Pattern and Compromise Designs 119
7.1 Introduction 119
7.2 Partial Aliased Effect-Number Pattern 121
7.3 Some General Results of Compromise Designs 124
7.4 Class One Compromise Designs 126
7.4.1 Largest Class One Clear Compromise Designs and Their Construction 126
7.4.2 Supremum f ?(q, n) and Construction of Largest Class One CCDs 127
7.4.3 Supremum n?(q, f ) and Construction of Largest Class One CCDs 130
7.4.4 Largest Class One Strongly Clear Compromise Designs 133
7.4.5 Class One General Optimal Compromise Designs 137
7.5 Discussion 141
8 General Minimum Lower-Order Confounding Criteria for Robust Parameter Designs 147 8.1 Introduction 147
8.2 Selection of Optimal Regular Robust Parameter Designs 149
8.3 An Algorithm for Searching Optimal Arrays 155
9 General Minimum Lower-Order Confounding Criterion for sn–m Designs 162
9.1 Introduction to sn–m Designs 162
9.2 GMC Criterion and Relationship with Other Criteria 166
9.3 GMC sn–m Designs Using Complementary Designs 174
9.4 B-GMC Criterion for Blocked sn–m Designs 178
10 General Minimum Lower-Order Confounding Criterion for Orthogonal Arrays 182
10.1 Introduction 182
10.2 ANOVA Models and Confounding Between Effects 183
10.3 Generalized AENP and GMC Criterion 187
10.4 Relationship with Other Criteria 189
10.5 Some G-GMC Designs 193
References 196
Index 206
“统计与数据科学丛书”已出版书目 208
查看详情
-
全新
广东省广州市
平均发货17小时
成功完成率95.31%
-
全新
广东省广州市
平均发货18小时
成功完成率95.08%
-
全新
广东省广州市
平均发货18小时
成功完成率95.57%
-
全新
-
4
全新
北京市丰台区
平均发货25小时
成功完成率87.03%
-
全新
北京市房山区
平均发货20小时
成功完成率82.27%
-
全新
北京市西城区
平均发货20小时
成功完成率86.91%
-
全新
湖北省武汉市
平均发货7小时
成功完成率74.07%
-
全新
广东省广州市
24小时内发货
成功完成率93.44%
-
全新
-
全新
广东省广州市
平均发货18小时
成功完成率95.79%
-
全新
广东省广州市
平均发货18小时
成功完成率95.69%
-
最优因析设计理论(
全新正版书籍,假一罚十,节假日发货(图片为标准图,仅供参考。以标题为准,不了解的可以询问客服。)
全新
北京市朝阳区
平均发货17小时
成功完成率93.6%
-
全新
北京市朝阳区
平均发货13小时
成功完成率78.49%
-
最优因析设计理论
以书名为准,全新正版现货,放心购买,购书咨询电话18515909251朱老师
全新
北京市丰台区
平均发货9小时
成功完成率87.85%
-
全新
河北省保定市
平均发货18小时
成功完成率88.78%
-
全新
河北省保定市
平均发货29小时
成功完成率80.57%
-
最优因析设计理论!
全新正版书籍,假一罚十,节假日正常发货(图片为标准图,仅供参考。以标题为准,不了解的可以询问客服。)
全新
北京市朝阳区
平均发货18小时
成功完成率93.37%
-
全新
江苏省无锡市
平均发货10小时
成功完成率90.41%
-
全新
山东省泰安市
平均发货28小时
成功完成率80.74%
-
全新
天津市西青区
平均发货16小时
成功完成率93.36%
-
全新
北京市房山区
平均发货21小时
成功完成率79.94%
-
全新
四川省成都市
平均发货26小时
成功完成率89.35%
-
全新
北京市房山区
平均发货21小时
成功完成率79.94%
-
全新
四川省成都市
平均发货16小时
成功完成率82.35%
-
全新
河北省保定市
平均发货30小时
成功完成率81.5%
-
全新
河北省保定市
平均发货24小时
成功完成率81.04%
-
全新
江苏省无锡市
平均发货6小时
成功完成率96.02%
-
全新
湖南省长沙市
平均发货29小时
成功完成率86.21%
-
全新
江苏省无锡市
平均发货14小时
成功完成率86.1%
-
全新
广东省广州市
平均发货16小时
成功完成率91.18%
-
全新
广东省东莞市
平均发货17小时
成功完成率92.12%
-
全新
河北省保定市
平均发货25小时
成功完成率91.89%
-
全新
河北省保定市
平均发货15小时
成功完成率93.03%
-
全新
江西省南昌市
平均发货25小时
成功完成率90.34%
-
最优因析设计理论
本店所售图书,保证正版新书,有个别图片和实书封面不一样,以实书封面为准,有需要确定的可以联系客服。我店不能开发票。当天下单第二天发货。
全新
四川省成都市
平均发货40小时
成功完成率82.61%
-
全新
江苏省无锡市
平均发货18小时
成功完成率89.06%
-
全新
河南省开封市
平均发货29小时
成功完成率82.53%
-
全新
北京市房山区
平均发货15小时
成功完成率78.31%
-
全新
天津市津南区
平均发货11小时
成功完成率84.38%
-
全新
北京市通州区
平均发货23小时
成功完成率63.51%
-
最优因析设计理论
全新正版,新华官方库房直发,可开发票,以书名及ISBN为准发货,图片为标准图仅供参考。
全新
吉林省松原市
平均发货22小时
成功完成率79.39%
-
全新
北京市通州区
平均发货22小时
成功完成率79.61%
-
全新
广东省广州市
平均发货11小时
成功完成率90.78%
-
全新
河北省保定市
平均发货29小时
成功完成率83.74%
-
全新
江苏省南京市
平均发货13小时
成功完成率93.71%
-
全新
四川省成都市
平均发货18小时
成功完成率84.9%
-
全新
北京市通州区
平均发货23小时
成功完成率53.33%
-
全新
北京市通州区
平均发货19小时
成功完成率84.38%
-
全新
北京市通州区
平均发货22小时
成功完成率81.73%